Metamath Proof Explorer


Theorem lvoln0N

Description: A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lvoln0.z 0˙=0.K
lvoln0.v V=LVolsK
Assertion lvoln0N KHLXVX0˙

Proof

Step Hyp Ref Expression
1 lvoln0.z 0˙=0.K
2 lvoln0.v V=LVolsK
3 eqid AtomsK=AtomsK
4 3 atex KHLAtomsK
5 n0 AtomsKppAtomsK
6 4 5 sylib KHLppAtomsK
7 6 adantr KHLXVppAtomsK
8 eqid K=K
9 8 3 2 lvolnleat KHLXVpAtomsK¬XKp
10 9 3expa KHLXVpAtomsK¬XKp
11 hlop KHLKOP
12 11 ad2antrr KHLXVpAtomsKKOP
13 eqid BaseK=BaseK
14 13 3 atbase pAtomsKpBaseK
15 14 adantl KHLXVpAtomsKpBaseK
16 13 8 1 op0le KOPpBaseK0˙Kp
17 12 15 16 syl2anc KHLXVpAtomsK0˙Kp
18 breq1 X=0˙XKp0˙Kp
19 17 18 syl5ibrcom KHLXVpAtomsKX=0˙XKp
20 19 necon3bd KHLXVpAtomsK¬XKpX0˙
21 10 20 mpd KHLXVpAtomsKX0˙
22 7 21 exlimddv KHLXVX0˙