Metamath Proof Explorer


Theorem madjusmdet

Description: Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B=BaseA
madjusmdet.a A=1NMatR
madjusmdet.d D=1NmaDetR
madjusmdet.k K=1NmaAdjuR
madjusmdet.t ·˙=R
madjusmdet.z Z=ℤRHomR
madjusmdet.e E=1N1maDetR
madjusmdet.n φN
madjusmdet.r φRCRing
madjusmdet.i φI1N
madjusmdet.j φJ1N
madjusmdet.m φMB
Assertion madjusmdet φJKMI=Z1I+J·˙EIsubMat1MJ

Proof

Step Hyp Ref Expression
1 madjusmdet.b B=BaseA
2 madjusmdet.a A=1NMatR
3 madjusmdet.d D=1NmaDetR
4 madjusmdet.k K=1NmaAdjuR
5 madjusmdet.t ·˙=R
6 madjusmdet.z Z=ℤRHomR
7 madjusmdet.e E=1N1maDetR
8 madjusmdet.n φN
9 madjusmdet.r φRCRing
10 madjusmdet.i φI1N
11 madjusmdet.j φJ1N
12 madjusmdet.m φMB
13 eqeq1 k=ik=1i=1
14 breq1 k=ikIiI
15 oveq1 k=ik1=i1
16 id k=ik=i
17 14 15 16 ifbieq12d k=iifkIk1k=ifiIi1i
18 13 17 ifbieq2d k=iifk=1IifkIk1k=ifi=1IifiIi1i
19 18 cbvmptv k1Nifk=1IifkIk1k=i1Nifi=1IifiIi1i
20 breq1 k=ikNiN
21 20 15 16 ifbieq12d k=iifkNk1k=ifiNi1i
22 13 21 ifbieq2d k=iifk=1NifkNk1k=ifi=1NifiNi1i
23 22 cbvmptv k1Nifk=1NifkNk1k=i1Nifi=1NifiNi1i
24 eqeq1 l=jl=1j=1
25 breq1 l=jlJjJ
26 oveq1 l=jl1=j1
27 id l=jl=j
28 25 26 27 ifbieq12d l=jiflJl1l=ifjJj1j
29 24 28 ifbieq2d l=jifl=1JiflJl1l=ifj=1JifjJj1j
30 29 cbvmptv l1Nifl=1JiflJl1l=j1Nifj=1JifjJj1j
31 breq1 l=jlNjN
32 31 26 27 ifbieq12d l=jiflNl1l=ifjNj1j
33 24 32 ifbieq2d l=jifl=1NiflNl1l=ifj=1NifjNj1j
34 33 cbvmptv l1Nifl=1NiflNl1l=j1Nifj=1NifjNj1j
35 1 2 3 4 5 6 7 8 9 10 11 12 19 23 30 34 madjusmdetlem4 φJKMI=Z1I+J·˙EIsubMat1MJ