Description: Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | madjusmdet.b | |
|
madjusmdet.a | |
||
madjusmdet.d | |
||
madjusmdet.k | |
||
madjusmdet.t | |
||
madjusmdet.z | |
||
madjusmdet.e | |
||
madjusmdet.n | |
||
madjusmdet.r | |
||
madjusmdet.i | |
||
madjusmdet.j | |
||
madjusmdet.m | |
||
Assertion | madjusmdet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madjusmdet.b | |
|
2 | madjusmdet.a | |
|
3 | madjusmdet.d | |
|
4 | madjusmdet.k | |
|
5 | madjusmdet.t | |
|
6 | madjusmdet.z | |
|
7 | madjusmdet.e | |
|
8 | madjusmdet.n | |
|
9 | madjusmdet.r | |
|
10 | madjusmdet.i | |
|
11 | madjusmdet.j | |
|
12 | madjusmdet.m | |
|
13 | eqeq1 | |
|
14 | breq1 | |
|
15 | oveq1 | |
|
16 | id | |
|
17 | 14 15 16 | ifbieq12d | |
18 | 13 17 | ifbieq2d | |
19 | 18 | cbvmptv | |
20 | breq1 | |
|
21 | 20 15 16 | ifbieq12d | |
22 | 13 21 | ifbieq2d | |
23 | 22 | cbvmptv | |
24 | eqeq1 | |
|
25 | breq1 | |
|
26 | oveq1 | |
|
27 | id | |
|
28 | 25 26 27 | ifbieq12d | |
29 | 24 28 | ifbieq2d | |
30 | 29 | cbvmptv | |
31 | breq1 | |
|
32 | 31 26 27 | ifbieq12d | |
33 | 24 32 | ifbieq2d | |
34 | 33 | cbvmptv | |
35 | 1 2 3 4 5 6 7 8 9 10 11 12 19 23 30 34 | madjusmdetlem4 | |