Metamath Proof Explorer


Theorem mamutpos

Description: Behavior of transposes in matrix products, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018)

Ref Expression
Hypotheses mamutpos.f F=RmaMulMNP
mamutpos.g G=RmaMulPNM
mamutpos.b B=BaseR
mamutpos.r φRCRing
mamutpos.m φMFin
mamutpos.n φNFin
mamutpos.p φPFin
mamutpos.x φXBM×N
mamutpos.y φYBN×P
Assertion mamutpos φtposXFY=tposYGtposX

Proof

Step Hyp Ref Expression
1 mamutpos.f F=RmaMulMNP
2 mamutpos.g G=RmaMulPNM
3 mamutpos.b B=BaseR
4 mamutpos.r φRCRing
5 mamutpos.m φMFin
6 mamutpos.n φNFin
7 mamutpos.p φPFin
8 mamutpos.x φXBM×N
9 mamutpos.y φYBN×P
10 eqid jM,iPRkNjXkRkYi=jM,iPRkNjXkRkYi
11 10 tposmpo tposjM,iPRkNjXkRkYi=iP,jMRkNjXkRkYi
12 simpl1 φiPjMkNφ
13 12 4 syl φiPjMkNRCRing
14 elmapi XBM×NX:M×NB
15 12 8 14 3syl φiPjMkNX:M×NB
16 simpl3 φiPjMkNjM
17 simpr φiPjMkNkN
18 15 16 17 fovrnd φiPjMkNjXkB
19 elmapi YBN×PY:N×PB
20 12 9 19 3syl φiPjMkNY:N×PB
21 simpl2 φiPjMkNiP
22 20 17 21 fovrnd φiPjMkNkYiB
23 eqid R=R
24 3 23 crngcom RCRingjXkBkYiBjXkRkYi=kYiRjXk
25 13 18 22 24 syl3anc φiPjMkNjXkRkYi=kYiRjXk
26 ovtpos itposYk=kYi
27 ovtpos ktposXj=jXk
28 26 27 oveq12i itposYkRktposXj=kYiRjXk
29 25 28 eqtr4di φiPjMkNjXkRkYi=itposYkRktposXj
30 29 mpteq2dva φiPjMkNjXkRkYi=kNitposYkRktposXj
31 30 oveq2d φiPjMRkNjXkRkYi=RkNitposYkRktposXj
32 31 mpoeq3dva φiP,jMRkNjXkRkYi=iP,jMRkNitposYkRktposXj
33 11 32 eqtrid φtposjM,iPRkNjXkRkYi=iP,jMRkNitposYkRktposXj
34 1 3 23 4 5 6 7 8 9 mamuval φXFY=jM,iPRkNjXkRkYi
35 34 tposeqd φtposXFY=tposjM,iPRkNjXkRkYi
36 tposmap YBN×PtposYBP×N
37 9 36 syl φtposYBP×N
38 tposmap XBM×NtposXBN×M
39 8 38 syl φtposXBN×M
40 2 3 23 4 7 6 5 37 39 mamuval φtposYGtposX=iP,jMRkNitposYkRktposXj
41 33 35 40 3eqtr4d φtposXFY=tposYGtposX