Metamath Proof Explorer


Theorem mamutpos

Description: Behavior of transposes in matrix products, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018)

Ref Expression
Hypotheses mamutpos.f F = R maMul M N P
mamutpos.g G = R maMul P N M
mamutpos.b B = Base R
mamutpos.r φ R CRing
mamutpos.m φ M Fin
mamutpos.n φ N Fin
mamutpos.p φ P Fin
mamutpos.x φ X B M × N
mamutpos.y φ Y B N × P
Assertion mamutpos φ tpos X F Y = tpos Y G tpos X

Proof

Step Hyp Ref Expression
1 mamutpos.f F = R maMul M N P
2 mamutpos.g G = R maMul P N M
3 mamutpos.b B = Base R
4 mamutpos.r φ R CRing
5 mamutpos.m φ M Fin
6 mamutpos.n φ N Fin
7 mamutpos.p φ P Fin
8 mamutpos.x φ X B M × N
9 mamutpos.y φ Y B N × P
10 eqid j M , i P R k N j X k R k Y i = j M , i P R k N j X k R k Y i
11 10 tposmpo tpos j M , i P R k N j X k R k Y i = i P , j M R k N j X k R k Y i
12 simpl1 φ i P j M k N φ
13 12 4 syl φ i P j M k N R CRing
14 elmapi X B M × N X : M × N B
15 12 8 14 3syl φ i P j M k N X : M × N B
16 simpl3 φ i P j M k N j M
17 simpr φ i P j M k N k N
18 15 16 17 fovrnd φ i P j M k N j X k B
19 elmapi Y B N × P Y : N × P B
20 12 9 19 3syl φ i P j M k N Y : N × P B
21 simpl2 φ i P j M k N i P
22 20 17 21 fovrnd φ i P j M k N k Y i B
23 eqid R = R
24 3 23 crngcom R CRing j X k B k Y i B j X k R k Y i = k Y i R j X k
25 13 18 22 24 syl3anc φ i P j M k N j X k R k Y i = k Y i R j X k
26 ovtpos i tpos Y k = k Y i
27 ovtpos k tpos X j = j X k
28 26 27 oveq12i i tpos Y k R k tpos X j = k Y i R j X k
29 25 28 eqtr4di φ i P j M k N j X k R k Y i = i tpos Y k R k tpos X j
30 29 mpteq2dva φ i P j M k N j X k R k Y i = k N i tpos Y k R k tpos X j
31 30 oveq2d φ i P j M R k N j X k R k Y i = R k N i tpos Y k R k tpos X j
32 31 mpoeq3dva φ i P , j M R k N j X k R k Y i = i P , j M R k N i tpos Y k R k tpos X j
33 11 32 eqtrid φ tpos j M , i P R k N j X k R k Y i = i P , j M R k N i tpos Y k R k tpos X j
34 1 3 23 4 5 6 7 8 9 mamuval φ X F Y = j M , i P R k N j X k R k Y i
35 34 tposeqd φ tpos X F Y = tpos j M , i P R k N j X k R k Y i
36 tposmap Y B N × P tpos Y B P × N
37 9 36 syl φ tpos Y B P × N
38 tposmap X B M × N tpos X B N × M
39 8 38 syl φ tpos X B N × M
40 2 3 23 4 7 6 5 37 39 mamuval φ tpos Y G tpos X = i P , j M R k N i tpos Y k R k tpos X j
41 33 35 40 3eqtr4d φ tpos X F Y = tpos Y G tpos X