| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamutpos.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) |
| 2 |
|
mamutpos.g |
⊢ 𝐺 = ( 𝑅 maMul 〈 𝑃 , 𝑁 , 𝑀 〉 ) |
| 3 |
|
mamutpos.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
mamutpos.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
mamutpos.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
| 6 |
|
mamutpos.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 7 |
|
mamutpos.p |
⊢ ( 𝜑 → 𝑃 ∈ Fin ) |
| 8 |
|
mamutpos.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 9 |
|
mamutpos.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) |
| 10 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) |
| 11 |
10
|
tposmpo |
⊢ tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) |
| 12 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝜑 ) |
| 13 |
12 4
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
| 14 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 15 |
12 8 14
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 16 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑗 ∈ 𝑀 ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 18 |
15 16 17
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑗 𝑋 𝑘 ) ∈ 𝐵 ) |
| 19 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) |
| 20 |
12 9 19
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) |
| 21 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑖 ∈ 𝑃 ) |
| 22 |
20 17 21
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝑌 𝑖 ) ∈ 𝐵 ) |
| 23 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 24 |
3 23
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑗 𝑋 𝑘 ) ∈ 𝐵 ∧ ( 𝑘 𝑌 𝑖 ) ∈ 𝐵 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) ) |
| 25 |
13 18 22 24
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) ) |
| 26 |
|
ovtpos |
⊢ ( 𝑖 tpos 𝑌 𝑘 ) = ( 𝑘 𝑌 𝑖 ) |
| 27 |
|
ovtpos |
⊢ ( 𝑘 tpos 𝑋 𝑗 ) = ( 𝑗 𝑋 𝑘 ) |
| 28 |
26 27
|
oveq12i |
⊢ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) |
| 29 |
25 28
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) |
| 30 |
29
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) → ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) |
| 31 |
30
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) |
| 32 |
31
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
| 33 |
11 32
|
eqtrid |
⊢ ( 𝜑 → tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
| 34 |
1 3 23 4 5 6 7 8 9
|
mamuval |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) ) |
| 35 |
34
|
tposeqd |
⊢ ( 𝜑 → tpos ( 𝑋 𝐹 𝑌 ) = tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) ) |
| 36 |
|
tposmap |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) → tpos 𝑌 ∈ ( 𝐵 ↑m ( 𝑃 × 𝑁 ) ) ) |
| 37 |
9 36
|
syl |
⊢ ( 𝜑 → tpos 𝑌 ∈ ( 𝐵 ↑m ( 𝑃 × 𝑁 ) ) ) |
| 38 |
|
tposmap |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → tpos 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 39 |
8 38
|
syl |
⊢ ( 𝜑 → tpos 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 40 |
2 3 23 4 7 6 5 37 39
|
mamuval |
⊢ ( 𝜑 → ( tpos 𝑌 𝐺 tpos 𝑋 ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
| 41 |
33 35 40
|
3eqtr4d |
⊢ ( 𝜑 → tpos ( 𝑋 𝐹 𝑌 ) = ( tpos 𝑌 𝐺 tpos 𝑋 ) ) |