Metamath Proof Explorer


Theorem mapdindp2

Description: Vector independence lemma. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses mapdindp1.v V=BaseW
mapdindp1.p +˙=+W
mapdindp1.o 0˙=0W
mapdindp1.n N=LSpanW
mapdindp1.w φWLVec
mapdindp1.x φXV0˙
mapdindp1.y φYV0˙
mapdindp1.z φZV0˙
mapdindp1.W φwV0˙
mapdindp1.e φNY=NZ
mapdindp1.ne φNXNY
mapdindp1.f φ¬wNXY
Assertion mapdindp2 φ¬wNXY+˙Z

Proof

Step Hyp Ref Expression
1 mapdindp1.v V=BaseW
2 mapdindp1.p +˙=+W
3 mapdindp1.o 0˙=0W
4 mapdindp1.n N=LSpanW
5 mapdindp1.w φWLVec
6 mapdindp1.x φXV0˙
7 mapdindp1.y φYV0˙
8 mapdindp1.z φZV0˙
9 mapdindp1.W φwV0˙
10 mapdindp1.e φNY=NZ
11 mapdindp1.ne φNXNY
12 mapdindp1.f φ¬wNXY
13 preq2 Y+˙Z=0˙XY+˙Z=X0˙
14 13 fveq2d Y+˙Z=0˙NXY+˙Z=NX0˙
15 lveclmod WLVecWLMod
16 5 15 syl φWLMod
17 6 eldifad φXV
18 1 3 4 16 17 lsppr0 φNX0˙=NX
19 14 18 sylan9eqr φY+˙Z=0˙NXY+˙Z=NX
20 7 eldifad φYV
21 prssi XVYVXYV
22 17 20 21 syl2anc φXYV
23 snsspr1 XXY
24 23 a1i φXXY
25 1 4 lspss WLModXYVXXYNXNXY
26 16 22 24 25 syl3anc φNXNXY
27 26 adantr φY+˙Z=0˙NXNXY
28 19 27 eqsstrd φY+˙Z=0˙NXY+˙ZNXY
29 12 adantr φY+˙Z=0˙¬wNXY
30 28 29 ssneldd φY+˙Z=0˙¬wNXY+˙Z
31 12 adantr φY+˙Z0˙¬wNXY
32 5 adantr φY+˙Z0˙WLVec
33 6 adantr φY+˙Z0˙XV0˙
34 7 adantr φY+˙Z0˙YV0˙
35 8 adantr φY+˙Z0˙ZV0˙
36 9 adantr φY+˙Z0˙wV0˙
37 10 adantr φY+˙Z0˙NY=NZ
38 11 adantr φY+˙Z0˙NXNY
39 simpr φY+˙Z0˙Y+˙Z0˙
40 1 2 3 4 32 33 34 35 36 37 38 31 39 mapdindp0 φY+˙Z0˙NY+˙Z=NY
41 40 oveq2d φY+˙Z0˙NXLSSumWNY+˙Z=NXLSSumWNY
42 eqid LSSumW=LSSumW
43 8 eldifad φZV
44 1 2 lmodvacl WLModYVZVY+˙ZV
45 16 20 43 44 syl3anc φY+˙ZV
46 1 4 42 16 17 45 lsmpr φNXY+˙Z=NXLSSumWNY+˙Z
47 46 adantr φY+˙Z0˙NXY+˙Z=NXLSSumWNY+˙Z
48 1 4 42 16 17 20 lsmpr φNXY=NXLSSumWNY
49 48 adantr φY+˙Z0˙NXY=NXLSSumWNY
50 41 47 49 3eqtr4d φY+˙Z0˙NXY+˙Z=NXY
51 31 50 neleqtrrd φY+˙Z0˙¬wNXY+˙Z
52 30 51 pm2.61dane φ¬wNXY+˙Z