Metamath Proof Explorer


Theorem mapdncol

Description: Transfer non-colinearity from domain to range of projectivity mapd . (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses mapdindp.h H = LHyp K
mapdindp.m M = mapd K W
mapdindp.u U = DVecH K W
mapdindp.v V = Base U
mapdindp.n N = LSpan U
mapdindp.c C = LCDual K W
mapdindp.d D = Base C
mapdindp.j J = LSpan C
mapdindp.k φ K HL W H
mapdindp.f φ F D
mapdindp.mx φ M N X = J F
mapdindp.x φ X V
mapdindp.y φ Y V
mapdindp.g φ G D
mapdindp.my φ M N Y = J G
mapdncol.q φ N X N Y
Assertion mapdncol φ J F J G

Proof

Step Hyp Ref Expression
1 mapdindp.h H = LHyp K
2 mapdindp.m M = mapd K W
3 mapdindp.u U = DVecH K W
4 mapdindp.v V = Base U
5 mapdindp.n N = LSpan U
6 mapdindp.c C = LCDual K W
7 mapdindp.d D = Base C
8 mapdindp.j J = LSpan C
9 mapdindp.k φ K HL W H
10 mapdindp.f φ F D
11 mapdindp.mx φ M N X = J F
12 mapdindp.x φ X V
13 mapdindp.y φ Y V
14 mapdindp.g φ G D
15 mapdindp.my φ M N Y = J G
16 mapdncol.q φ N X N Y
17 eqid LSubSp U = LSubSp U
18 1 3 9 dvhlmod φ U LMod
19 4 17 5 lspsncl U LMod X V N X LSubSp U
20 18 12 19 syl2anc φ N X LSubSp U
21 4 17 5 lspsncl U LMod Y V N Y LSubSp U
22 18 13 21 syl2anc φ N Y LSubSp U
23 1 3 17 2 9 20 22 mapd11 φ M N X = M N Y N X = N Y
24 23 necon3bid φ M N X M N Y N X N Y
25 16 24 mpbird φ M N X M N Y
26 25 11 15 3netr3d φ J F J G