Metamath Proof Explorer


Theorem mapdpg

Description: Part 1 of proof of the first fundamental theorem of projective geometry. Part (1) in Baer p. 44. Our notation corresponds to Baer's as follows: M for *, N{ } for F(), J{ } for G(), X for x, G for x', Y for y, h for y'. TODO: Rename variables per mapdhval . (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
Assertion mapdpg φ∃!hFMNY=JhMNX-˙Y=JGRh

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mapdpglem24 φhFMNY=JhMNX-˙Y=JGRh
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mapdpglem32 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRih=i
20 19 3exp φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRih=i
21 20 ralrimivv φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRih=i
22 sneq h=ih=i
23 22 fveq2d h=iJh=Ji
24 23 eqeq2d h=iMNY=JhMNY=Ji
25 oveq2 h=iGRh=GRi
26 25 sneqd h=iGRh=GRi
27 26 fveq2d h=iJGRh=JGRi
28 27 eqeq2d h=iMNX-˙Y=JGRhMNX-˙Y=JGRi
29 24 28 anbi12d h=iMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRi
30 29 reu4 ∃!hFMNY=JhMNX-˙Y=JGRhhFMNY=JhMNX-˙Y=JGRhhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRih=i
31 18 21 30 sylanbrc φ∃!hFMNY=JhMNX-˙Y=JGRh