Metamath Proof Explorer


Theorem mapdval3N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval2.h H=LHypK
mapdval2.u U=DVecHKW
mapdval2.s S=LSubSpU
mapdval2.n N=LSpanU
mapdval2.f F=LFnlU
mapdval2.l L=LKerU
mapdval2.o O=ocHKW
mapdval2.m M=mapdKW
mapdval2.k φKHLWH
mapdval2.t φTS
mapdval2.c C=gF|OOLg=Lg
Assertion mapdval3N φMT=vTfC|OLf=Nv

Proof

Step Hyp Ref Expression
1 mapdval2.h H=LHypK
2 mapdval2.u U=DVecHKW
3 mapdval2.s S=LSubSpU
4 mapdval2.n N=LSpanU
5 mapdval2.f F=LFnlU
6 mapdval2.l L=LKerU
7 mapdval2.o O=ocHKW
8 mapdval2.m M=mapdKW
9 mapdval2.k φKHLWH
10 mapdval2.t φTS
11 mapdval2.c C=gF|OOLg=Lg
12 1 2 3 4 5 6 7 8 9 10 11 mapdval2N φMT=fC|vTOLf=Nv
13 iunrab vTfC|OLf=Nv=fC|vTOLf=Nv
14 12 13 eqtr4di φMT=vTfC|OLf=Nv