Metamath Proof Explorer


Theorem marypha2lem3

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t T=xAx×Fx
Assertion marypha2lem3 FFnAGFnAGTxAGxFx

Proof

Step Hyp Ref Expression
1 marypha2lem.t T=xAx×Fx
2 dffn5 GFnAG=xAGx
3 2 biimpi GFnAG=xAGx
4 3 adantl FFnAGFnAG=xAGx
5 df-mpt xAGx=xy|xAy=Gx
6 4 5 eqtrdi FFnAGFnAG=xy|xAy=Gx
7 1 marypha2lem2 T=xy|xAyFx
8 7 a1i FFnAGFnAT=xy|xAyFx
9 6 8 sseq12d FFnAGFnAGTxy|xAy=Gxxy|xAyFx
10 ssopab2bw xy|xAy=Gxxy|xAyFxxyxAy=GxxAyFx
11 9 10 bitrdi FFnAGFnAGTxyxAy=GxxAyFx
12 19.21v yxAy=GxyFxxAyy=GxyFx
13 imdistan xAy=GxyFxxAy=GxxAyFx
14 13 albii yxAy=GxyFxyxAy=GxxAyFx
15 fvex GxV
16 eleq1 y=GxyFxGxFx
17 15 16 ceqsalv yy=GxyFxGxFx
18 17 imbi2i xAyy=GxyFxxAGxFx
19 12 14 18 3bitr3i yxAy=GxxAyFxxAGxFx
20 19 albii xyxAy=GxxAyFxxxAGxFx
21 df-ral xAGxFxxxAGxFx
22 20 21 bitr4i xyxAy=GxxAyFxxAGxFx
23 11 22 bitrdi FFnAGFnAGTxAGxFx