Metamath Proof Explorer


Theorem marypha2lem4

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t T=xAx×Fx
Assertion marypha2lem4 FFnAXATX=FX

Proof

Step Hyp Ref Expression
1 marypha2lem.t T=xAx×Fx
2 1 marypha2lem2 T=xy|xAyFx
3 2 imaeq1i TX=xy|xAyFxX
4 df-ima xy|xAyFxX=ranxy|xAyFxX
5 3 4 eqtri TX=ranxy|xAyFxX
6 resopab2 XAxy|xAyFxX=xy|xXyFx
7 6 adantl FFnAXAxy|xAyFxX=xy|xXyFx
8 7 rneqd FFnAXAranxy|xAyFxX=ranxy|xXyFx
9 rnopab ranxy|xXyFx=y|xxXyFx
10 df-rex xXyFxxxXyFx
11 10 bicomi xxXyFxxXyFx
12 11 abbii y|xxXyFx=y|xXyFx
13 df-iun xXFx=y|xXyFx
14 12 13 eqtr4i y|xxXyFx=xXFx
15 14 a1i FFnAXAy|xxXyFx=xXFx
16 9 15 eqtrid FFnAXAranxy|xXyFx=xXFx
17 8 16 eqtrd FFnAXAranxy|xAyFxX=xXFx
18 5 17 eqtrid FFnAXATX=xXFx
19 fnfun FFnAFunF
20 19 adantr FFnAXAFunF
21 funiunfv FunFxXFx=FX
22 20 21 syl FFnAXAxXFx=FX
23 18 22 eqtrd FFnAXATX=FX