Metamath Proof Explorer


Theorem matplusg2

Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses matplusg2.a A=NMatR
matplusg2.b B=BaseA
matplusg2.p ˙=+A
matplusg2.q +˙=+R
Assertion matplusg2 XBYBX˙Y=X+˙fY

Proof

Step Hyp Ref Expression
1 matplusg2.a A=NMatR
2 matplusg2.b B=BaseA
3 matplusg2.p ˙=+A
4 matplusg2.q +˙=+R
5 1 2 matrcl XBNFinRV
6 5 adantr XBYBNFinRV
7 eqid RfreeLModN×N=RfreeLModN×N
8 1 7 matplusg NFinRV+RfreeLModN×N=+A
9 8 3 eqtr4di NFinRV+RfreeLModN×N=˙
10 6 9 syl XBYB+RfreeLModN×N=˙
11 10 oveqd XBYBX+RfreeLModN×NY=X˙Y
12 eqid BaseRfreeLModN×N=BaseRfreeLModN×N
13 6 simprd XBYBRV
14 6 simpld XBYBNFin
15 xpfi NFinNFinN×NFin
16 14 14 15 syl2anc XBYBN×NFin
17 simpl XBYBXB
18 1 7 matbas NFinRVBaseRfreeLModN×N=BaseA
19 6 18 syl XBYBBaseRfreeLModN×N=BaseA
20 19 2 eqtr4di XBYBBaseRfreeLModN×N=B
21 17 20 eleqtrrd XBYBXBaseRfreeLModN×N
22 simpr XBYBYB
23 22 20 eleqtrrd XBYBYBaseRfreeLModN×N
24 eqid +RfreeLModN×N=+RfreeLModN×N
25 7 12 13 16 21 23 4 24 frlmplusgval XBYBX+RfreeLModN×NY=X+˙fY
26 11 25 eqtr3d XBYBX˙Y=X+˙fY