Metamath Proof Explorer


Theorem mavmul0

Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019)

Ref Expression
Hypothesis mavmul0.t ·˙=RmaVecMulNN
Assertion mavmul0 N=RV·˙=

Proof

Step Hyp Ref Expression
1 mavmul0.t ·˙=RmaVecMulNN
2 eqid NMatR=NMatR
3 eqid BaseR=BaseR
4 eqid R=R
5 simpr N=RVRV
6 0fin Fin
7 eleq1 N=NFinFin
8 6 7 mpbiri N=NFin
9 8 adantr N=RVNFin
10 0ex V
11 snidg V
12 10 11 mp1i N=RV
13 oveq1 N=NMatR=MatR
14 13 adantr N=RVNMatR=MatR
15 14 fveq2d N=RVBaseNMatR=BaseMatR
16 mat0dimbas0 RVBaseMatR=
17 16 adantl N=RVBaseMatR=
18 15 17 eqtrd N=RVBaseNMatR=
19 12 18 eleqtrrd N=RVBaseNMatR
20 eqidd N==
21 el1o 1𝑜=
22 20 21 sylibr N=1𝑜
23 oveq2 N=BaseRN=BaseR
24 fvex BaseRV
25 map0e BaseRVBaseR=1𝑜
26 24 25 mp1i N=BaseR=1𝑜
27 23 26 eqtrd N=BaseRN=1𝑜
28 22 27 eleqtrrd N=BaseRN
29 28 adantr N=RVBaseRN
30 2 1 3 4 5 9 19 29 mavmulval N=RV·˙=iNRjNijRj
31 mpteq1 N=iNRjNijRj=iRjNijRj
32 31 adantr N=RViNRjNijRj=iRjNijRj
33 mpt0 iRjNijRj=
34 32 33 eqtrdi N=RViNRjNijRj=
35 30 34 eqtrd N=RV·˙=