| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mavmul0.t |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 |  | 0fi |  | 
						
							| 7 |  | eleq1 |  | 
						
							| 8 | 6 7 | mpbiri |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | 0ex |  | 
						
							| 11 |  | snidg |  | 
						
							| 12 | 10 11 | mp1i |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 |  | mat0dimbas0 |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 15 17 | eqtrd |  | 
						
							| 19 | 12 18 | eleqtrrd |  | 
						
							| 20 |  | eqidd |  | 
						
							| 21 |  | el1o |  | 
						
							| 22 | 20 21 | sylibr |  | 
						
							| 23 |  | oveq2 |  | 
						
							| 24 |  | fvex |  | 
						
							| 25 |  | map0e |  | 
						
							| 26 | 24 25 | mp1i |  | 
						
							| 27 | 23 26 | eqtrd |  | 
						
							| 28 | 22 27 | eleqtrrd |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 2 1 3 4 5 9 19 29 | mavmulval |  | 
						
							| 31 |  | mpteq1 |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 |  | mpt0 |  | 
						
							| 34 | 32 33 | eqtrdi |  | 
						
							| 35 | 30 34 | eqtrd |  |