Metamath Proof Explorer


Theorem mavmul0g

Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019)

Ref Expression
Hypothesis mavmul0.t ·˙=RmaVecMulNN
Assertion mavmul0g N=RVX·˙Y=

Proof

Step Hyp Ref Expression
1 mavmul0.t ·˙=RmaVecMulNN
2 oveq12 X=Y=X·˙Y=·˙
3 1 mavmul0 N=RV·˙=
4 2 3 sylan9eq X=Y=N=RVX·˙Y=
5 eqid BaseR=BaseR
6 eqid R=R
7 simpr N=RVRV
8 0fin Fin
9 eleq1 N=NFinFin
10 8 9 mpbiri N=NFin
11 10 adantr N=RVNFin
12 1 5 6 7 11 11 mvmulfval N=RV·˙=iBaseRN×N,jBaseRNkNRlNkilRjl
13 12 dmeqd N=RVdom·˙=domiBaseRN×N,jBaseRNkNRlNkilRjl
14 0ex V
15 eleq1 N=NVV
16 14 15 mpbiri N=NV
17 16 mptexd N=kNRlNkilRjlV
18 17 adantr N=RVkNRlNkilRjlV
19 18 adantr N=RViBaseRN×NjBaseRNkNRlNkilRjlV
20 19 ralrimivva N=RViBaseRN×NjBaseRNkNRlNkilRjlV
21 eqid iBaseRN×N,jBaseRNkNRlNkilRjl=iBaseRN×N,jBaseRNkNRlNkilRjl
22 21 dmmpoga iBaseRN×NjBaseRNkNRlNkilRjlVdomiBaseRN×N,jBaseRNkNRlNkilRjl=BaseRN×N×BaseRN
23 20 22 syl N=RVdomiBaseRN×N,jBaseRNkNRlNkilRjl=BaseRN×N×BaseRN
24 id N=N=
25 24 24 xpeq12d N=N×N=×
26 0xp ×=
27 25 26 eqtrdi N=N×N=
28 27 oveq2d N=BaseRN×N=BaseR
29 fvex BaseRV
30 map0e BaseRVBaseR=1𝑜
31 29 30 mp1i N=BaseR=1𝑜
32 28 31 eqtrd N=BaseRN×N=1𝑜
33 32 adantr N=RVBaseRN×N=1𝑜
34 df1o2 1𝑜=
35 33 34 eqtrdi N=RVBaseRN×N=
36 oveq2 N=BaseRN=BaseR
37 29 30 mp1i RVBaseR=1𝑜
38 37 34 eqtrdi RVBaseR=
39 36 38 sylan9eq N=RVBaseRN=
40 35 39 xpeq12d N=RVBaseRN×N×BaseRN=×
41 13 23 40 3eqtrd N=RVdom·˙=×
42 elsni XX=
43 elsni YY=
44 42 43 anim12i XYX=Y=
45 44 con3i ¬X=Y=¬XY
46 ndmovg dom·˙=׬XYX·˙Y=
47 41 45 46 syl2anr ¬X=Y=N=RVX·˙Y=
48 4 47 pm2.61ian N=RVX·˙Y=