| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mavmul0.t |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
| 2 |
|
oveq12 |
⊢ ( ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) → ( 𝑋 · 𝑌 ) = ( ∅ · ∅ ) ) |
| 3 |
1
|
mavmul0 |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ∅ · ∅ ) = ∅ ) |
| 4 |
2 3
|
sylan9eq |
⊢ ( ( ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ∧ ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) ) → ( 𝑋 · 𝑌 ) = ∅ ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 7 |
|
simpr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
| 8 |
|
0fi |
⊢ ∅ ∈ Fin |
| 9 |
|
eleq1 |
⊢ ( 𝑁 = ∅ → ( 𝑁 ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 10 |
8 9
|
mpbiri |
⊢ ( 𝑁 = ∅ → 𝑁 ∈ Fin ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
| 12 |
1 5 6 7 11 11
|
mvmulfval |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → · = ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) ) |
| 13 |
12
|
dmeqd |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → dom · = dom ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) ) |
| 14 |
|
0ex |
⊢ ∅ ∈ V |
| 15 |
|
eleq1 |
⊢ ( 𝑁 = ∅ → ( 𝑁 ∈ V ↔ ∅ ∈ V ) ) |
| 16 |
14 15
|
mpbiri |
⊢ ( 𝑁 = ∅ → 𝑁 ∈ V ) |
| 17 |
16
|
mptexd |
⊢ ( 𝑁 = ∅ → ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ∧ 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
| 20 |
19
|
ralrimivva |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ∀ 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ∀ 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V ) |
| 21 |
|
eqid |
⊢ ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) = ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) |
| 22 |
21
|
dmmpoga |
⊢ ( ∀ 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ∀ 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ∈ V → dom ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) = ( ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) × ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) ) |
| 23 |
20 22
|
syl |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑖 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) , 𝑗 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑘 𝑖 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ 𝑙 ) ) ) ) ) ) = ( ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) × ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) ) |
| 24 |
|
id |
⊢ ( 𝑁 = ∅ → 𝑁 = ∅ ) |
| 25 |
24 24
|
xpeq12d |
⊢ ( 𝑁 = ∅ → ( 𝑁 × 𝑁 ) = ( ∅ × ∅ ) ) |
| 26 |
|
0xp |
⊢ ( ∅ × ∅ ) = ∅ |
| 27 |
25 26
|
eqtrdi |
⊢ ( 𝑁 = ∅ → ( 𝑁 × 𝑁 ) = ∅ ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
| 29 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 30 |
|
map0e |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
| 31 |
29 30
|
mp1i |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
| 32 |
28 31
|
eqtrd |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = 1o ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = 1o ) |
| 34 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 35 |
33 34
|
eqtrdi |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = { ∅ } ) |
| 36 |
|
oveq2 |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
| 37 |
29 30
|
mp1i |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
| 38 |
37 34
|
eqtrdi |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = { ∅ } ) |
| 39 |
36 38
|
sylan9eq |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) = { ∅ } ) |
| 40 |
35 39
|
xpeq12d |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) × ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) = ( { ∅ } × { ∅ } ) ) |
| 41 |
13 23 40
|
3eqtrd |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → dom · = ( { ∅ } × { ∅ } ) ) |
| 42 |
|
elsni |
⊢ ( 𝑋 ∈ { ∅ } → 𝑋 = ∅ ) |
| 43 |
|
elsni |
⊢ ( 𝑌 ∈ { ∅ } → 𝑌 = ∅ ) |
| 44 |
42 43
|
anim12i |
⊢ ( ( 𝑋 ∈ { ∅ } ∧ 𝑌 ∈ { ∅ } ) → ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) |
| 45 |
44
|
con3i |
⊢ ( ¬ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) → ¬ ( 𝑋 ∈ { ∅ } ∧ 𝑌 ∈ { ∅ } ) ) |
| 46 |
|
ndmovg |
⊢ ( ( dom · = ( { ∅ } × { ∅ } ) ∧ ¬ ( 𝑋 ∈ { ∅ } ∧ 𝑌 ∈ { ∅ } ) ) → ( 𝑋 · 𝑌 ) = ∅ ) |
| 47 |
41 45 46
|
syl2anr |
⊢ ( ( ¬ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ∧ ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) ) → ( 𝑋 · 𝑌 ) = ∅ ) |
| 48 |
4 47
|
pm2.61ian |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑋 · 𝑌 ) = ∅ ) |