| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|
| 2 |
|
id |
|
| 3 |
|
recn |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
addridd |
|
| 6 |
|
iftrue |
|
| 7 |
6
|
adantl |
|
| 8 |
|
le0neg2 |
|
| 9 |
8
|
biimpa |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simpr |
|
| 12 |
|
renegcl |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
0re |
|
| 15 |
|
letri3 |
|
| 16 |
13 14 15
|
sylancl |
|
| 17 |
10 11 16
|
mpbir2and |
|
| 18 |
17
|
ifeq1da |
|
| 19 |
|
ifid |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
7 20
|
oveq12d |
|
| 22 |
|
absid |
|
| 23 |
5 21 22
|
3eqtr4d |
|
| 24 |
3
|
adantr |
|
| 25 |
24
|
negcld |
|
| 26 |
25
|
addlidd |
|
| 27 |
|
letri3 |
|
| 28 |
14 27
|
mpan2 |
|
| 29 |
28
|
biimprd |
|
| 30 |
29
|
impl |
|
| 31 |
30
|
ifeq1da |
|
| 32 |
|
ifid |
|
| 33 |
31 32
|
eqtrdi |
|
| 34 |
|
le0neg1 |
|
| 35 |
34
|
biimpa |
|
| 36 |
35
|
iftrued |
|
| 37 |
33 36
|
oveq12d |
|
| 38 |
|
absnid |
|
| 39 |
26 37 38
|
3eqtr4d |
|
| 40 |
1 2 23 39
|
lecasei |
|