| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfadd.1 |
|
| 2 |
|
mbfadd.2 |
|
| 3 |
|
mbff |
|
| 4 |
1 3
|
syl |
|
| 5 |
4
|
ffnd |
|
| 6 |
|
mbff |
|
| 7 |
2 6
|
syl |
|
| 8 |
7
|
ffnd |
|
| 9 |
|
mbfdm |
|
| 10 |
1 9
|
syl |
|
| 11 |
|
mbfdm |
|
| 12 |
2 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
|
eqidd |
|
| 15 |
|
eqidd |
|
| 16 |
5 8 10 12 13 14 15
|
offval |
|
| 17 |
|
elinel1 |
|
| 18 |
|
ffvelcdm |
|
| 19 |
4 17 18
|
syl2an |
|
| 20 |
|
elinel2 |
|
| 21 |
|
ffvelcdm |
|
| 22 |
7 20 21
|
syl2an |
|
| 23 |
19 22
|
readdd |
|
| 24 |
23
|
mpteq2dva |
|
| 25 |
|
inmbl |
|
| 26 |
10 12 25
|
syl2anc |
|
| 27 |
19
|
recld |
|
| 28 |
22
|
recld |
|
| 29 |
|
eqidd |
|
| 30 |
|
eqidd |
|
| 31 |
26 27 28 29 30
|
offval2 |
|
| 32 |
24 31
|
eqtr4d |
|
| 33 |
|
inss1 |
|
| 34 |
|
resmpt |
|
| 35 |
33 34
|
ax-mp |
|
| 36 |
4
|
feqmptd |
|
| 37 |
36 1
|
eqeltrrd |
|
| 38 |
|
mbfres |
|
| 39 |
37 26 38
|
syl2anc |
|
| 40 |
35 39
|
eqeltrrid |
|
| 41 |
19
|
ismbfcn2 |
|
| 42 |
40 41
|
mpbid |
|
| 43 |
42
|
simpld |
|
| 44 |
|
inss2 |
|
| 45 |
|
resmpt |
|
| 46 |
44 45
|
ax-mp |
|
| 47 |
7
|
feqmptd |
|
| 48 |
47 2
|
eqeltrrd |
|
| 49 |
|
mbfres |
|
| 50 |
48 26 49
|
syl2anc |
|
| 51 |
46 50
|
eqeltrrid |
|
| 52 |
22
|
ismbfcn2 |
|
| 53 |
51 52
|
mpbid |
|
| 54 |
53
|
simpld |
|
| 55 |
27
|
fmpttd |
|
| 56 |
28
|
fmpttd |
|
| 57 |
43 54 55 56
|
mbfaddlem |
|
| 58 |
32 57
|
eqeltrd |
|
| 59 |
19 22
|
imaddd |
|
| 60 |
59
|
mpteq2dva |
|
| 61 |
19
|
imcld |
|
| 62 |
22
|
imcld |
|
| 63 |
|
eqidd |
|
| 64 |
|
eqidd |
|
| 65 |
26 61 62 63 64
|
offval2 |
|
| 66 |
60 65
|
eqtr4d |
|
| 67 |
42
|
simprd |
|
| 68 |
53
|
simprd |
|
| 69 |
61
|
fmpttd |
|
| 70 |
62
|
fmpttd |
|
| 71 |
67 68 69 70
|
mbfaddlem |
|
| 72 |
66 71
|
eqeltrd |
|
| 73 |
19 22
|
addcld |
|
| 74 |
73
|
ismbfcn2 |
|
| 75 |
58 72 74
|
mpbir2and |
|
| 76 |
16 75
|
eqeltrd |
|