Metamath Proof Explorer


Theorem mbfmco

Description: The composition of two measurable functions is measurable. See cnmpt11 . (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses mbfmco.1 φ R ran sigAlgebra
mbfmco.2 φ S ran sigAlgebra
mbfmco.3 φ T ran sigAlgebra
mbfmco.4 φ F R MblFn μ S
mbfmco.5 φ G S MblFn μ T
Assertion mbfmco φ G F R MblFn μ T

Proof

Step Hyp Ref Expression
1 mbfmco.1 φ R ran sigAlgebra
2 mbfmco.2 φ S ran sigAlgebra
3 mbfmco.3 φ T ran sigAlgebra
4 mbfmco.4 φ F R MblFn μ S
5 mbfmco.5 φ G S MblFn μ T
6 2 3 5 mbfmf φ G : S T
7 1 2 4 mbfmf φ F : R S
8 fco G : S T F : R S G F : R T
9 6 7 8 syl2anc φ G F : R T
10 unielsiga T ran sigAlgebra T T
11 3 10 syl φ T T
12 unielsiga R ran sigAlgebra R R
13 1 12 syl φ R R
14 11 13 elmapd φ G F T R G F : R T
15 9 14 mpbird φ G F T R
16 cnvco G F -1 = F -1 G -1
17 16 imaeq1i G F -1 a = F -1 G -1 a
18 imaco F -1 G -1 a = F -1 G -1 a
19 17 18 eqtri G F -1 a = F -1 G -1 a
20 1 adantr φ a T R ran sigAlgebra
21 2 adantr φ a T S ran sigAlgebra
22 4 adantr φ a T F R MblFn μ S
23 3 adantr φ a T T ran sigAlgebra
24 5 adantr φ a T G S MblFn μ T
25 simpr φ a T a T
26 21 23 24 25 mbfmcnvima φ a T G -1 a S
27 20 21 22 26 mbfmcnvima φ a T F -1 G -1 a R
28 19 27 eqeltrid φ a T G F -1 a R
29 28 ralrimiva φ a T G F -1 a R
30 1 3 ismbfm φ G F R MblFn μ T G F T R a T G F -1 a R
31 15 29 30 mpbir2and φ G F R MblFn μ T