Metamath Proof Explorer


Theorem mbfmco

Description: The composition of two measurable functions is measurable. See cnmpt11 . (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses mbfmco.1 φRransigAlgebra
mbfmco.2 φSransigAlgebra
mbfmco.3 φTransigAlgebra
mbfmco.4 φFRMblFnμS
mbfmco.5 φGSMblFnμT
Assertion mbfmco φGFRMblFnμT

Proof

Step Hyp Ref Expression
1 mbfmco.1 φRransigAlgebra
2 mbfmco.2 φSransigAlgebra
3 mbfmco.3 φTransigAlgebra
4 mbfmco.4 φFRMblFnμS
5 mbfmco.5 φGSMblFnμT
6 2 3 5 mbfmf φG:ST
7 1 2 4 mbfmf φF:RS
8 fco G:STF:RSGF:RT
9 6 7 8 syl2anc φGF:RT
10 unielsiga TransigAlgebraTT
11 3 10 syl φTT
12 unielsiga RransigAlgebraRR
13 1 12 syl φRR
14 11 13 elmapd φGFTRGF:RT
15 9 14 mpbird φGFTR
16 cnvco GF-1=F-1G-1
17 16 imaeq1i GF-1a=F-1G-1a
18 imaco F-1G-1a=F-1G-1a
19 17 18 eqtri GF-1a=F-1G-1a
20 1 adantr φaTRransigAlgebra
21 2 adantr φaTSransigAlgebra
22 4 adantr φaTFRMblFnμS
23 3 adantr φaTTransigAlgebra
24 5 adantr φaTGSMblFnμT
25 simpr φaTaT
26 21 23 24 25 mbfmcnvima φaTG-1aS
27 20 21 22 26 mbfmcnvima φaTF-1G-1aR
28 19 27 eqeltrid φaTGF-1aR
29 28 ralrimiva φaTGF-1aR
30 1 3 ismbfm φGFRMblFnμTGFTRaTGF-1aR
31 15 29 30 mpbir2and φGFRMblFnμT