Metamath Proof Explorer


Theorem meadjuni

Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjuni.m φMMeas
meadjuni.s S=domM
meadjuni.x φXS
meadjuni.cnb φXω
meadjuni.dj φDisjxXx
Assertion meadjuni φMX=sum^MX

Proof

Step Hyp Ref Expression
1 meadjuni.m φMMeas
2 meadjuni.s S=domM
3 meadjuni.x φXS
4 meadjuni.cnb φXω
5 meadjuni.dj φDisjxXx
6 breq1 y=XyωXω
7 disjeq1 y=XDisjxyxDisjxXx
8 6 7 anbi12d y=XyωDisjxyxXωDisjxXx
9 unieq y=Xy=X
10 9 fveq2d y=XMy=MX
11 reseq2 y=XMy=MX
12 11 fveq2d y=Xsum^My=sum^MX
13 10 12 eqeq12d y=XMy=sum^MyMX=sum^MX
14 8 13 imbi12d y=XyωDisjxyxMy=sum^MyXωDisjxXxMX=sum^MX
15 ismea MMeasM:domM0+∞domMSAlgM=0y𝒫domMyωDisjxyxMy=sum^My
16 1 15 sylib φM:domM0+∞domMSAlgM=0y𝒫domMyωDisjxyxMy=sum^My
17 16 simprd φy𝒫domMyωDisjxyxMy=sum^My
18 1 2 dmmeasal φSSAlg
19 18 3 ssexd φXV
20 3 2 sseqtrdi φXdomM
21 19 20 elpwd φX𝒫domM
22 14 17 21 rspcdva φXωDisjxXxMX=sum^MX
23 4 5 22 mp2and φMX=sum^MX