Metamath Proof Explorer


Theorem meaiuninc3

Description: Measures are continuous from below: if E is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of Fremlin1 p. 16 . This theorem generalizes meaiuninc and meaiuninc2 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses meaiuninc3.p nφ
meaiuninc3.f _nE
meaiuninc3.m φMMeas
meaiuninc3.n φN
meaiuninc3.z Z=N
meaiuninc3.e φE:ZdomM
meaiuninc3.i φnZEnEn+1
meaiuninc3.s S=nZMEn
Assertion meaiuninc3 φS*MnZEn

Proof

Step Hyp Ref Expression
1 meaiuninc3.p nφ
2 meaiuninc3.f _nE
3 meaiuninc3.m φMMeas
4 meaiuninc3.n φN
5 meaiuninc3.z Z=N
6 meaiuninc3.e φE:ZdomM
7 meaiuninc3.i φnZEnEn+1
8 meaiuninc3.s S=nZMEn
9 nfv nkZ
10 1 9 nfan nφkZ
11 nfcv _nk
12 2 11 nffv _nEk
13 nfcv _nk+1
14 2 13 nffv _nEk+1
15 12 14 nfss nEkEk+1
16 10 15 nfim nφkZEkEk+1
17 eleq1w n=knZkZ
18 17 anbi2d n=kφnZφkZ
19 fveq2 n=kEn=Ek
20 fvoveq1 n=kEn+1=Ek+1
21 19 20 sseq12d n=kEnEn+1EkEk+1
22 18 21 imbi12d n=kφnZEnEn+1φkZEkEk+1
23 16 22 7 chvarfv φkZEkEk+1
24 nfcv _kM
25 nfcv _kEn
26 24 25 nffv _kMEn
27 nfcv _nM
28 27 12 nffv _nMEk
29 2fveq3 n=kMEn=MEk
30 26 28 29 cbvmpt nZMEn=kZMEk
31 8 30 eqtri S=kZMEk
32 3 4 5 6 23 31 meaiuninc3v φS*MkZEk
33 fveq2 k=nEk=En
34 12 25 33 cbviun kZEk=nZEn
35 34 fveq2i MkZEk=MnZEn
36 32 35 breqtrdi φS*MnZEn