Metamath Proof Explorer


Theorem meetfval

Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018) TODO: prove meetfval2 first to reduce net proof size (existence part)?

Ref Expression
Hypotheses meetfval.u G=glbK
meetfval.m ˙=meetK
Assertion meetfval KV˙=xyz|xyGz

Proof

Step Hyp Ref Expression
1 meetfval.u G=glbK
2 meetfval.m ˙=meetK
3 elex KVKV
4 fvex BaseKV
5 moeq *zz=Gxy
6 5 a1i xBaseKyBaseK*zz=Gxy
7 eqid xyz|xBaseKyBaseKz=Gxy=xyz|xBaseKyBaseKz=Gxy
8 4 4 6 7 oprabex xyz|xBaseKyBaseKz=GxyV
9 8 a1i KVxyz|xBaseKyBaseKz=GxyV
10 1 glbfun FunG
11 funbrfv2b FunGxyGzxydomGGxy=z
12 10 11 ax-mp xyGzxydomGGxy=z
13 eqid BaseK=BaseK
14 eqid K=K
15 simpl KVxydomGKV
16 simpr KVxydomGxydomG
17 13 14 1 15 16 glbelss KVxydomGxyBaseK
18 17 ex KVxydomGxyBaseK
19 vex xV
20 vex yV
21 19 20 prss xBaseKyBaseKxyBaseK
22 18 21 syl6ibr KVxydomGxBaseKyBaseK
23 eqcom Gxy=zz=Gxy
24 23 biimpi Gxy=zz=Gxy
25 22 24 anim12d1 KVxydomGGxy=zxBaseKyBaseKz=Gxy
26 12 25 biimtrid KVxyGzxBaseKyBaseKz=Gxy
27 26 alrimiv KVzxyGzxBaseKyBaseKz=Gxy
28 27 alrimiv KVyzxyGzxBaseKyBaseKz=Gxy
29 28 alrimiv KVxyzxyGzxBaseKyBaseKz=Gxy
30 ssoprab2 xyzxyGzxBaseKyBaseKz=Gxyxyz|xyGzxyz|xBaseKyBaseKz=Gxy
31 29 30 syl KVxyz|xyGzxyz|xBaseKyBaseKz=Gxy
32 9 31 ssexd KVxyz|xyGzV
33 fveq2 p=Kglbp=glbK
34 33 1 eqtr4di p=Kglbp=G
35 34 breqd p=KxyglbpzxyGz
36 35 oprabbidv p=Kxyz|xyglbpz=xyz|xyGz
37 df-meet meet=pVxyz|xyglbpz
38 36 37 fvmptg KVxyz|xyGzVmeetK=xyz|xyGz
39 32 38 mpdan KVmeetK=xyz|xyGz
40 2 39 eqtrid KV˙=xyz|xyGz
41 3 40 syl KV˙=xyz|xyGz