Metamath Proof Explorer


Theorem mendmulrfval

Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Hypotheses mendmulrfval.a A=MEndoM
mendmulrfval.b B=BaseA
Assertion mendmulrfval A=xB,yBxy

Proof

Step Hyp Ref Expression
1 mendmulrfval.a A=MEndoM
2 mendmulrfval.b B=BaseA
3 1 mendbas MLMHomM=BaseA
4 2 3 eqtr4i B=MLMHomM
5 eqid xB,yBx+Mfy=xB,yBx+Mfy
6 eqid xB,yBxy=xB,yBxy
7 eqid ScalarM=ScalarM
8 eqid xBaseScalarM,yBBaseM×xMfy=xBaseScalarM,yBBaseM×xMfy
9 4 5 6 7 8 mendval MVMEndoM=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
10 1 9 eqtrid MVA=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
11 10 fveq2d MVA=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
12 2 fvexi BV
13 12 12 mpoex xB,yBxyV
14 eqid BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
15 14 algmulr xB,yBxyVxB,yBxy=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
16 13 15 mp1i MVxB,yBxy=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
17 11 16 eqtr4d MVA=xB,yBxy
18 fvprc ¬MVMEndoM=
19 1 18 eqtrid ¬MVA=
20 19 fveq2d ¬MVA=
21 mulridx 𝑟=Slotndx
22 21 str0 =
23 20 22 eqtr4di ¬MVA=
24 19 fveq2d ¬MVBaseA=Base
25 2 24 eqtrid ¬MVB=Base
26 base0 =Base
27 25 26 eqtr4di ¬MVB=
28 27 olcd ¬MVB=B=
29 0mpo0 B=B=xB,yBxy=
30 28 29 syl ¬MVxB,yBxy=
31 23 30 eqtr4d ¬MVA=xB,yBxy
32 17 31 pm2.61i A=xB,yBxy