Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mendmulrfval.a | |
|
mendmulrfval.b | |
||
Assertion | mendmulrfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mendmulrfval.a | |
|
2 | mendmulrfval.b | |
|
3 | 1 | mendbas | |
4 | 2 3 | eqtr4i | |
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 4 5 6 7 8 | mendval | |
10 | 1 9 | eqtrid | |
11 | 10 | fveq2d | |
12 | 2 | fvexi | |
13 | 12 12 | mpoex | |
14 | eqid | |
|
15 | 14 | algmulr | |
16 | 13 15 | mp1i | |
17 | 11 16 | eqtr4d | |
18 | fvprc | |
|
19 | 1 18 | eqtrid | |
20 | 19 | fveq2d | |
21 | mulridx | |
|
22 | 21 | str0 | |
23 | 20 22 | eqtr4di | |
24 | 19 | fveq2d | |
25 | 2 24 | eqtrid | |
26 | base0 | |
|
27 | 25 26 | eqtr4di | |
28 | 27 | olcd | |
29 | 0mpo0 | |
|
30 | 28 29 | syl | |
31 | 23 30 | eqtr4d | |
32 | 17 31 | pm2.61i | |