Metamath Proof Explorer


Theorem metakunt14

Description: A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024)

Ref Expression
Hypotheses metakunt14.1 φM
metakunt14.2 φI
metakunt14.3 φIM
metakunt14.4 A=x1Mifx=IMifx<Ixx1
metakunt14.5 C=y1Mify=MIify<Iyy+1
Assertion metakunt14 φA:1M1-1 onto1MA-1=C

Proof

Step Hyp Ref Expression
1 metakunt14.1 φM
2 metakunt14.2 φI
3 metakunt14.3 φIM
4 metakunt14.4 A=x1Mifx=IMifx<Ixx1
5 metakunt14.5 C=y1Mify=MIify<Iyy+1
6 1 2 3 4 metakunt1 φA:1M1M
7 1 2 3 5 metakunt2 φC:1M1M
8 1 adantr φa1MM
9 2 adantr φa1MI
10 3 adantr φa1MIM
11 simpr φa1Ma1M
12 8 9 10 4 5 11 metakunt9 φa1MCAa=a
13 12 ralrimiva φa1MCAa=a
14 1 adantr φb1MM
15 2 adantr φb1MI
16 3 adantr φb1MIM
17 simpr φb1Mb1M
18 14 15 16 4 5 17 metakunt13 φb1MACb=b
19 18 ralrimiva φb1MACb=b
20 6 7 13 19 2fvidf1od φA:1M1-1 onto1M
21 6 7 13 19 2fvidinvd φA-1=C
22 20 21 jca φA:1M1-1 onto1MA-1=C