Metamath Proof Explorer


Theorem metakunt34

Description: D is a permutation. (Contributed by metakunt, 18-Jul-2024)

Ref Expression
Hypotheses metakunt34.1 φM
metakunt34.2 φI
metakunt34.3 φIM
metakunt34.4 D=w1Mifw=Iwifw<Iw+MI+ifIw+M-I10w-I+ifIwI10
Assertion metakunt34 φD:1M1-1 onto1M

Proof

Step Hyp Ref Expression
1 metakunt34.1 φM
2 metakunt34.2 φI
3 metakunt34.3 φIM
4 metakunt34.4 D=w1Mifw=Iwifw<Iw+MI+ifIw+M-I10w-I+ifIwI10
5 eqid x1Mifx=IMifx<Ixx1=x1Mifx=IMifx<Ixx1
6 eqid z1Mifz=MIifz<Izz+1=z1Mifz=MIifz<Izz+1
7 1 2 3 5 6 metakunt14 φx1Mifx=IMifx<Ixx1:1M1-1 onto1Mx1Mifx=IMifx<Ixx1-1=z1Mifz=MIifz<Izz+1
8 7 simpld φx1Mifx=IMifx<Ixx1:1M1-1 onto1M
9 f1ocnv x1Mifx=IMifx<Ixx1:1M1-1 onto1Mx1Mifx=IMifx<Ixx1-1:1M1-1 onto1M
10 8 9 syl φx1Mifx=IMifx<Ixx1-1:1M1-1 onto1M
11 7 simprd φx1Mifx=IMifx<Ixx1-1=z1Mifz=MIifz<Izz+1
12 11 f1oeq1d φx1Mifx=IMifx<Ixx1-1:1M1-1 onto1Mz1Mifz=MIifz<Izz+1:1M1-1 onto1M
13 10 12 mpbid φz1Mifz=MIifz<Izz+1:1M1-1 onto1M
14 eqid y1Mify=MMify<Iy+M-Iy+1-I=y1Mify=MMify<Iy+M-Iy+1-I
15 1 2 3 14 metakunt25 φy1Mify=MMify<Iy+M-Iy+1-I:1M1-1 onto1M
16 f1oco y1Mify=MMify<Iy+M-Iy+1-I:1M1-1 onto1Mx1Mifx=IMifx<Ixx1:1M1-1 onto1My1Mify=MMify<Iy+M-Iy+1-Ix1Mifx=IMifx<Ixx1:1M1-1 onto1M
17 15 8 16 syl2anc φy1Mify=MMify<Iy+M-Iy+1-Ix1Mifx=IMifx<Ixx1:1M1-1 onto1M
18 f1oco z1Mifz=MIifz<Izz+1:1M1-1 onto1My1Mify=MMify<Iy+M-Iy+1-Ix1Mifx=IMifx<Ixx1:1M1-1 onto1Mz1Mifz=MIifz<Izz+1y1Mify=MMify<Iy+M-Iy+1-Ix1Mifx=IMifx<Ixx1:1M1-1 onto1M
19 13 17 18 syl2anc φz1Mifz=MIifz<Izz+1y1Mify=MMify<Iy+M-Iy+1-Ix1Mifx=IMifx<Ixx1:1M1-1 onto1M
20 1 2 3 5 14 6 4 metakunt33 φz1Mifz=MIifz<Izz+1y1Mify=MMify<Iy+M-Iy+1-Ix1Mifx=IMifx<Ixx1=D
21 20 f1oeq1d φz1Mifz=MIifz<Izz+1y1Mify=MMify<Iy+M-Iy+1-Ix1Mifx=IMifx<Ixx1:1M1-1 onto1MD:1M1-1 onto1M
22 19 21 mpbid φD:1M1-1 onto1M