Description: Two ways to say a mapping from metric C to metric D is continuous at point P . The distance arguments are swapped compared to metcnp (and Munkres' metcn ) for compatibility with df-lm . Definition 1.3-3 of Kreyszig p. 20. (Contributed by NM, 4-Jun-2007) (Revised by Mario Carneiro, 13-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metcn.2 | |
|
metcn.4 | |
||
Assertion | metcnp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcn.2 | |
|
2 | metcn.4 | |
|
3 | 1 2 | metcnp | |
4 | simpl1 | |
|
5 | 4 | ad2antrr | |
6 | simpl3 | |
|
7 | 6 | ad2antrr | |
8 | simpr | |
|
9 | xmetsym | |
|
10 | 5 7 8 9 | syl3anc | |
11 | 10 | breq1d | |
12 | simpl2 | |
|
13 | 12 | ad2antrr | |
14 | simpllr | |
|
15 | 14 7 | ffvelcdmd | |
16 | 14 8 | ffvelcdmd | |
17 | xmetsym | |
|
18 | 13 15 16 17 | syl3anc | |
19 | 18 | breq1d | |
20 | 11 19 | imbi12d | |
21 | 20 | ralbidva | |
22 | 21 | anassrs | |
23 | 22 | rexbidva | |
24 | 23 | ralbidva | |
25 | 24 | pm5.32da | |
26 | 3 25 | bitrd | |