Metamath Proof Explorer


Theorem metcnp2

Description: Two ways to say a mapping from metric C to metric D is continuous at point P . The distance arguments are swapped compared to metcnp (and Munkres' metcn ) for compatibility with df-lm . Definition 1.3-3 of Kreyszig p. 20. (Contributed by NM, 4-Jun-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
Assertion metcnp2 C∞MetXD∞MetYPXFJCnPKPF:XYy+z+wXwCP<zFwDFP<y

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 1 2 metcnp C∞MetXD∞MetYPXFJCnPKPF:XYy+z+wXPCw<zFPDFw<y
4 simpl1 C∞MetXD∞MetYPXF:XYC∞MetX
5 4 ad2antrr C∞MetXD∞MetYPXF:XYy+z+wXC∞MetX
6 simpl3 C∞MetXD∞MetYPXF:XYPX
7 6 ad2antrr C∞MetXD∞MetYPXF:XYy+z+wXPX
8 simpr C∞MetXD∞MetYPXF:XYy+z+wXwX
9 xmetsym C∞MetXPXwXPCw=wCP
10 5 7 8 9 syl3anc C∞MetXD∞MetYPXF:XYy+z+wXPCw=wCP
11 10 breq1d C∞MetXD∞MetYPXF:XYy+z+wXPCw<zwCP<z
12 simpl2 C∞MetXD∞MetYPXF:XYD∞MetY
13 12 ad2antrr C∞MetXD∞MetYPXF:XYy+z+wXD∞MetY
14 simpllr C∞MetXD∞MetYPXF:XYy+z+wXF:XY
15 14 7 ffvelcdmd C∞MetXD∞MetYPXF:XYy+z+wXFPY
16 14 8 ffvelcdmd C∞MetXD∞MetYPXF:XYy+z+wXFwY
17 xmetsym D∞MetYFPYFwYFPDFw=FwDFP
18 13 15 16 17 syl3anc C∞MetXD∞MetYPXF:XYy+z+wXFPDFw=FwDFP
19 18 breq1d C∞MetXD∞MetYPXF:XYy+z+wXFPDFw<yFwDFP<y
20 11 19 imbi12d C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFPDFw<ywCP<zFwDFP<y
21 20 ralbidva C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFPDFw<ywXwCP<zFwDFP<y
22 21 anassrs C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFPDFw<ywXwCP<zFwDFP<y
23 22 rexbidva C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFPDFw<yz+wXwCP<zFwDFP<y
24 23 ralbidva C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFPDFw<yy+z+wXwCP<zFwDFP<y
25 24 pm5.32da C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFPDFw<yF:XYy+z+wXwCP<zFwDFP<y
26 3 25 bitrd C∞MetXD∞MetYPXFJCnPKPF:XYy+z+wXwCP<zFwDFP<y