Metamath Proof Explorer


Theorem metcnpi

Description: Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp . (Contributed by NM, 17-Dec-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
Assertion metcnpi C∞MetXD∞MetYFJCnPKPA+x+yXPCy<xFPDFy<A

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 simpr C∞MetXD∞MetYFJCnPKPFJCnPKP
4 simpll C∞MetXD∞MetYFJCnPKPC∞MetX
5 simplr C∞MetXD∞MetYFJCnPKPD∞MetY
6 eqid J=J
7 6 cnprcl FJCnPKPPJ
8 7 adantl C∞MetXD∞MetYFJCnPKPPJ
9 1 mopnuni C∞MetXX=J
10 9 ad2antrr C∞MetXD∞MetYFJCnPKPX=J
11 8 10 eleqtrrd C∞MetXD∞MetYFJCnPKPPX
12 1 2 metcnp C∞MetXD∞MetYPXFJCnPKPF:XYz+x+yXPCy<xFPDFy<z
13 4 5 11 12 syl3anc C∞MetXD∞MetYFJCnPKPFJCnPKPF:XYz+x+yXPCy<xFPDFy<z
14 3 13 mpbid C∞MetXD∞MetYFJCnPKPF:XYz+x+yXPCy<xFPDFy<z
15 breq2 z=AFPDFy<zFPDFy<A
16 15 imbi2d z=APCy<xFPDFy<zPCy<xFPDFy<A
17 16 rexralbidv z=Ax+yXPCy<xFPDFy<zx+yXPCy<xFPDFy<A
18 17 rspccv z+x+yXPCy<xFPDFy<zA+x+yXPCy<xFPDFy<A
19 14 18 simpl2im C∞MetXD∞MetYFJCnPKPA+x+yXPCy<xFPDFy<A
20 19 impr C∞MetXD∞MetYFJCnPKPA+x+yXPCy<xFPDFy<A