Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | metdscn.f | |
|
Assertion | metdsle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscn.f | |
|
2 | simprr | |
|
3 | simpr | |
|
4 | 3 | sselda | |
5 | 4 | adantrr | |
6 | 2 5 | jca | |
7 | 1 | metdstri | |
8 | 6 7 | syldan | |
9 | simpll | |
|
10 | xmetsym | |
|
11 | 9 2 5 10 | syl3anc | |
12 | 1 | metds0 | |
13 | 12 | 3expa | |
14 | 13 | adantrr | |
15 | 11 14 | oveq12d | |
16 | xmetcl | |
|
17 | 9 5 2 16 | syl3anc | |
18 | 17 | xaddridd | |
19 | 15 18 | eqtrd | |
20 | 8 19 | breqtrd | |