Metamath Proof Explorer


Theorem metdsle

Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypothesis metdscn.f F=xXsupranySxDy*<
Assertion metdsle D∞MetXSXASBXFBADB

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 simprr D∞MetXSXASBXBX
3 simpr D∞MetXSXSX
4 3 sselda D∞MetXSXASAX
5 4 adantrr D∞MetXSXASBXAX
6 2 5 jca D∞MetXSXASBXBXAX
7 1 metdstri D∞MetXSXBXAXFBBDA+𝑒FA
8 6 7 syldan D∞MetXSXASBXFBBDA+𝑒FA
9 simpll D∞MetXSXASBXD∞MetX
10 xmetsym D∞MetXBXAXBDA=ADB
11 9 2 5 10 syl3anc D∞MetXSXASBXBDA=ADB
12 1 metds0 D∞MetXSXASFA=0
13 12 3expa D∞MetXSXASFA=0
14 13 adantrr D∞MetXSXASBXFA=0
15 11 14 oveq12d D∞MetXSXASBXBDA+𝑒FA=ADB+𝑒0
16 xmetcl D∞MetXAXBXADB*
17 9 5 2 16 syl3anc D∞MetXSXASBXADB*
18 17 xaddridd D∞MetXSXASBXADB+𝑒0=ADB
19 15 18 eqtrd D∞MetXSXASBXBDA+𝑒FA=ADB
20 8 19 breqtrd D∞MetXSXASBXFBADB