Metamath Proof Explorer


Theorem metrtri

Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014)

Ref Expression
Assertion metrtri DMetXAXBXCXADCBDCADB

Proof

Step Hyp Ref Expression
1 metcl DMetXAXCXADC
2 1 3adant3r2 DMetXAXBXCXADC
3 metcl DMetXBXCXBDC
4 3 3adant3r1 DMetXAXBXCXBDC
5 eqid dist𝑠*=dist𝑠*
6 5 xrsdsreval ADCBDCADCdist𝑠*BDC=ADCBDC
7 2 4 6 syl2anc DMetXAXBXCXADCdist𝑠*BDC=ADCBDC
8 metxmet DMetXD∞MetX
9 5 xmetrtri2 D∞MetXAXBXCXADCdist𝑠*BDCADB
10 8 9 sylan DMetXAXBXCXADCdist𝑠*BDCADB
11 7 10 eqbrtrrd DMetXAXBXCXADCBDCADB