Metamath Proof Explorer


Theorem xrsdsreval

Description: The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis xrsds.d D=dist𝑠*
Assertion xrsdsreval ABADB=AB

Proof

Step Hyp Ref Expression
1 xrsds.d D=dist𝑠*
2 rexr AA*
3 rexr BB*
4 1 xrsdsval A*B*ADB=ifABB+𝑒AA+𝑒B
5 2 3 4 syl2an ABADB=ifABB+𝑒AA+𝑒B
6 rexsub BAB+𝑒A=BA
7 6 ancoms ABB+𝑒A=BA
8 7 adantr ABABB+𝑒A=BA
9 abssuble0 ABABAB=BA
10 9 3expa ABABAB=BA
11 8 10 eqtr4d ABABB+𝑒A=AB
12 rexsub ABA+𝑒B=AB
13 12 adantr AB¬ABA+𝑒B=AB
14 letric ABABBA
15 14 orcanai AB¬ABBA
16 abssubge0 BABAAB=AB
17 16 3com12 ABBAAB=AB
18 17 3expa ABBAAB=AB
19 15 18 syldan AB¬ABAB=AB
20 13 19 eqtr4d AB¬ABA+𝑒B=AB
21 11 20 ifeqda ABifABB+𝑒AA+𝑒B=AB
22 5 21 eqtrd ABADB=AB