Metamath Proof Explorer


Theorem mgcmnt1

Description: The lower adjoint F of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 A = Base V
mgcoval.2 B = Base W
mgcoval.3 ˙ = V
mgcoval.4 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcval.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcval.2 φ V Proset
mgcval.3 φ W Proset
mgccole.1 φ F H G
mgcmnt1.1 φ X A
mgcmnt1.2 φ Y A
mgcmnt1.3 φ X ˙ Y
Assertion mgcmnt1 Could not format assertion : No typesetting found for |- ( ph -> ( F ` X ) .c_ ( F ` Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgcoval.1 A = Base V
2 mgcoval.2 B = Base W
3 mgcoval.3 ˙ = V
4 mgcoval.4 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
5 mgcval.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
6 mgcval.2 φ V Proset
7 mgcval.3 φ W Proset
8 mgccole.1 φ F H G
9 mgcmnt1.1 φ X A
10 mgcmnt1.2 φ Y A
11 mgcmnt1.3 φ X ˙ Y
12 1 2 3 4 5 6 7 mgcval Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) with typecode |-
13 8 12 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) with typecode |-
14 13 simplrd φ G : B A
15 13 simplld φ F : A B
16 15 10 ffvelrnd φ F Y B
17 14 16 ffvelrnd φ G F Y A
18 1 2 3 4 5 6 7 8 10 mgccole1 φ Y ˙ G F Y
19 1 3 prstr V Proset X A Y A G F Y A X ˙ Y Y ˙ G F Y X ˙ G F Y
20 6 9 10 17 11 18 19 syl132anc φ X ˙ G F Y
21 13 simprd Could not format ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) with typecode |-
22 fveq2 x = X F x = F X
23 22 breq1d Could not format ( x = X -> ( ( F ` x ) .c_ y <-> ( F ` X ) .c_ y ) ) : No typesetting found for |- ( x = X -> ( ( F ` x ) .c_ y <-> ( F ` X ) .c_ y ) ) with typecode |-
24 breq1 x = X x ˙ G y X ˙ G y
25 23 24 bibi12d Could not format ( x = X -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = X -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
26 25 adantl Could not format ( ( ph /\ x = X ) -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ( ph /\ x = X ) -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
27 26 ralbidv Could not format ( ( ph /\ x = X ) -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ( ph /\ x = X ) -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
28 9 27 rspcdv Could not format ( ph -> ( A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ph -> ( A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
29 21 28 mpd Could not format ( ph -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) with typecode |-
30 simpr φ y = F Y y = F Y
31 30 breq2d Could not format ( ( ph /\ y = ( F ` Y ) ) -> ( ( F ` X ) .c_ y <-> ( F ` X ) .c_ ( F ` Y ) ) ) : No typesetting found for |- ( ( ph /\ y = ( F ` Y ) ) -> ( ( F ` X ) .c_ y <-> ( F ` X ) .c_ ( F ` Y ) ) ) with typecode |-
32 30 fveq2d φ y = F Y G y = G F Y
33 32 breq2d φ y = F Y X ˙ G y X ˙ G F Y
34 31 33 bibi12d Could not format ( ( ph /\ y = ( F ` Y ) ) -> ( ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ ( F ` Y ) <-> X .<_ ( G ` ( F ` Y ) ) ) ) ) : No typesetting found for |- ( ( ph /\ y = ( F ` Y ) ) -> ( ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ ( F ` Y ) <-> X .<_ ( G ` ( F ` Y ) ) ) ) ) with typecode |-
35 16 34 rspcdv Could not format ( ph -> ( A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) -> ( ( F ` X ) .c_ ( F ` Y ) <-> X .<_ ( G ` ( F ` Y ) ) ) ) ) : No typesetting found for |- ( ph -> ( A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) -> ( ( F ` X ) .c_ ( F ` Y ) <-> X .<_ ( G ` ( F ` Y ) ) ) ) ) with typecode |-
36 29 35 mpd Could not format ( ph -> ( ( F ` X ) .c_ ( F ` Y ) <-> X .<_ ( G ` ( F ` Y ) ) ) ) : No typesetting found for |- ( ph -> ( ( F ` X ) .c_ ( F ` Y ) <-> X .<_ ( G ` ( F ` Y ) ) ) ) with typecode |-
37 20 36 mpbird Could not format ( ph -> ( F ` X ) .c_ ( F ` Y ) ) : No typesetting found for |- ( ph -> ( F ` X ) .c_ ( F ` Y ) ) with typecode |-