Metamath Proof Explorer


Theorem mgpsumn

Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m M=mulGrpR
mgpsumunsn.t ·˙=R
mgpsumunsn.r φRCRing
mgpsumunsn.n φNFin
mgpsumunsn.i φIN
mgpsumunsn.a φkNABaseR
mgpsumn.n 1˙=1R
mgpsumn.1 k=IA=1˙
Assertion mgpsumn φMkNA=MkNIA

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m M=mulGrpR
2 mgpsumunsn.t ·˙=R
3 mgpsumunsn.r φRCRing
4 mgpsumunsn.n φNFin
5 mgpsumunsn.i φIN
6 mgpsumunsn.a φkNABaseR
7 mgpsumn.n 1˙=1R
8 mgpsumn.1 k=IA=1˙
9 crngring RCRingRRing
10 3 9 syl φRRing
11 eqid BaseR=BaseR
12 11 7 ringidcl RRing1˙BaseR
13 10 12 syl φ1˙BaseR
14 1 2 3 4 5 6 13 8 mgpsumunsn φMkNA=MkNIA·˙1˙
15 1 11 mgpbas BaseR=BaseM
16 1 crngmgp RCRingMCMnd
17 3 16 syl φMCMnd
18 diffi NFinNIFin
19 4 18 syl φNIFin
20 eldifi kNIkN
21 20 6 sylan2 φkNIABaseR
22 21 ralrimiva φkNIABaseR
23 15 17 19 22 gsummptcl φMkNIABaseR
24 11 2 7 ringridm RRingMkNIABaseRMkNIA·˙1˙=MkNIA
25 10 23 24 syl2anc φMkNIA·˙1˙=MkNIA
26 14 25 eqtrd φMkNA=MkNIA