Metamath Proof Explorer


Theorem mgpsumn

Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m M = mulGrp R
mgpsumunsn.t · ˙ = R
mgpsumunsn.r φ R CRing
mgpsumunsn.n φ N Fin
mgpsumunsn.i φ I N
mgpsumunsn.a φ k N A Base R
mgpsumn.n 1 ˙ = 1 R
mgpsumn.1 k = I A = 1 ˙
Assertion mgpsumn φ M k N A = M k N I A

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m M = mulGrp R
2 mgpsumunsn.t · ˙ = R
3 mgpsumunsn.r φ R CRing
4 mgpsumunsn.n φ N Fin
5 mgpsumunsn.i φ I N
6 mgpsumunsn.a φ k N A Base R
7 mgpsumn.n 1 ˙ = 1 R
8 mgpsumn.1 k = I A = 1 ˙
9 crngring R CRing R Ring
10 3 9 syl φ R Ring
11 eqid Base R = Base R
12 11 7 ringidcl R Ring 1 ˙ Base R
13 10 12 syl φ 1 ˙ Base R
14 1 2 3 4 5 6 13 8 mgpsumunsn φ M k N A = M k N I A · ˙ 1 ˙
15 1 11 mgpbas Base R = Base M
16 1 crngmgp R CRing M CMnd
17 3 16 syl φ M CMnd
18 diffi N Fin N I Fin
19 4 18 syl φ N I Fin
20 eldifi k N I k N
21 20 6 sylan2 φ k N I A Base R
22 21 ralrimiva φ k N I A Base R
23 15 17 19 22 gsummptcl φ M k N I A Base R
24 11 2 7 ringridm R Ring M k N I A Base R M k N I A · ˙ 1 ˙ = M k N I A
25 10 23 24 syl2anc φ M k N I A · ˙ 1 ˙ = M k N I A
26 14 25 eqtrd φ M k N A = M k N I A