Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 with evalSub collapsed to eval . (Contributed by SN, 23-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhphf4.q | |
|
mhphf4.h | |
||
mhphf4.k | |
||
mhphf4.f | |
||
mhphf4.m | |
||
mhphf4.b | |
||
mhphf4.x | |
||
mhphf4.e | |
||
mhphf4.i | |
||
mhphf4.s | |
||
mhphf4.l | |
||
mhphf4.n | |
||
mhphf4.p | |
||
mhphf4.a | |
||
Assertion | mhphf4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf4.q | |
|
2 | mhphf4.h | |
|
3 | mhphf4.k | |
|
4 | mhphf4.f | |
|
5 | mhphf4.m | |
|
6 | mhphf4.b | |
|
7 | mhphf4.x | |
|
8 | mhphf4.e | |
|
9 | mhphf4.i | |
|
10 | mhphf4.s | |
|
11 | mhphf4.l | |
|
12 | mhphf4.n | |
|
13 | mhphf4.p | |
|
14 | mhphf4.a | |
|
15 | 1 3 | evlval | |
16 | eqid | |
|
17 | eqid | |
|
18 | 10 | crngringd | |
19 | 3 | subrgid | |
20 | 18 19 | syl | |
21 | 3 | ressid | |
22 | 10 21 | syl | |
23 | 22 | eqcomd | |
24 | 23 | oveq2d | |
25 | 2 24 | eqtrid | |
26 | 25 | fveq1d | |
27 | 13 26 | eleqtrd | |
28 | 15 16 17 3 4 5 6 7 8 9 10 20 11 12 27 14 | mhphf3 | |