Metamath Proof Explorer


Theorem mhphf4

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 with evalSub collapsed to eval . (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mhphf4.q Q = I eval S
mhphf4.h H = I mHomP S
mhphf4.k K = Base S
mhphf4.f F = S freeLMod I
mhphf4.m M = Base F
mhphf4.b ˙ = F
mhphf4.x · ˙ = S
mhphf4.e × ˙ = mulGrp S
mhphf4.s φ S CRing
mhphf4.l φ L K
mhphf4.p φ X H N
mhphf4.a φ A M
Assertion mhphf4 φ Q X L ˙ A = N × ˙ L · ˙ Q X A

Proof

Step Hyp Ref Expression
1 mhphf4.q Q = I eval S
2 mhphf4.h H = I mHomP S
3 mhphf4.k K = Base S
4 mhphf4.f F = S freeLMod I
5 mhphf4.m M = Base F
6 mhphf4.b ˙ = F
7 mhphf4.x · ˙ = S
8 mhphf4.e × ˙ = mulGrp S
9 mhphf4.s φ S CRing
10 mhphf4.l φ L K
11 mhphf4.p φ X H N
12 mhphf4.a φ A M
13 1 3 evlval Q = I evalSub S K
14 eqid I mHomP S 𝑠 K = I mHomP S 𝑠 K
15 eqid S 𝑠 K = S 𝑠 K
16 9 crngringd φ S Ring
17 3 subrgid S Ring K SubRing S
18 16 17 syl φ K SubRing S
19 3 ressid S CRing S 𝑠 K = S
20 9 19 syl φ S 𝑠 K = S
21 20 eqcomd φ S = S 𝑠 K
22 21 oveq2d φ I mHomP S = I mHomP S 𝑠 K
23 2 22 eqtrid φ H = I mHomP S 𝑠 K
24 23 fveq1d φ H N = I mHomP S 𝑠 K N
25 11 24 eleqtrd φ X I mHomP S 𝑠 K N
26 13 14 15 3 4 5 6 7 8 9 18 10 25 12 mhphf3 φ Q X L ˙ A = N × ˙ L · ˙ Q X A