Metamath Proof Explorer


Theorem mhphf4

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 with evalSub collapsed to eval . (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mhphf4.q Q=IevalS
mhphf4.h H=ImHomPS
mhphf4.k K=BaseS
mhphf4.f F=SfreeLModI
mhphf4.m M=BaseF
mhphf4.b ˙=F
mhphf4.x ·˙=S
mhphf4.e ×˙=mulGrpS
mhphf4.i φIV
mhphf4.s φSCRing
mhphf4.l φLK
mhphf4.n φN0
mhphf4.p φXHN
mhphf4.a φAM
Assertion mhphf4 φQXL˙A=N×˙L·˙QXA

Proof

Step Hyp Ref Expression
1 mhphf4.q Q=IevalS
2 mhphf4.h H=ImHomPS
3 mhphf4.k K=BaseS
4 mhphf4.f F=SfreeLModI
5 mhphf4.m M=BaseF
6 mhphf4.b ˙=F
7 mhphf4.x ·˙=S
8 mhphf4.e ×˙=mulGrpS
9 mhphf4.i φIV
10 mhphf4.s φSCRing
11 mhphf4.l φLK
12 mhphf4.n φN0
13 mhphf4.p φXHN
14 mhphf4.a φAM
15 1 3 evlval Q=IevalSubSK
16 eqid ImHomPS𝑠K=ImHomPS𝑠K
17 eqid S𝑠K=S𝑠K
18 10 crngringd φSRing
19 3 subrgid SRingKSubRingS
20 18 19 syl φKSubRingS
21 3 ressid SCRingS𝑠K=S
22 10 21 syl φS𝑠K=S
23 22 eqcomd φS=S𝑠K
24 23 oveq2d φImHomPS=ImHomPS𝑠K
25 2 24 eqtrid φH=ImHomPS𝑠K
26 25 fveq1d φHN=ImHomPS𝑠KN
27 13 26 eleqtrd φXImHomPS𝑠KN
28 15 16 17 3 4 5 6 7 8 9 10 20 11 12 27 14 mhphf3 φQXL˙A=N×˙L·˙QXA