| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p |  | 
						
							| 2 |  | mirval.d |  | 
						
							| 3 |  | mirval.i |  | 
						
							| 4 |  | mirval.l |  | 
						
							| 5 |  | mirval.s |  | 
						
							| 6 |  | mirval.g |  | 
						
							| 7 |  | mirhl.m |  | 
						
							| 8 |  | mirhl.k |  | 
						
							| 9 |  | mirhl.a |  | 
						
							| 10 |  | mirhl.x |  | 
						
							| 11 |  | mirhl.y |  | 
						
							| 12 |  | mirhl.z |  | 
						
							| 13 |  | mirbtwnhl.1 |  | 
						
							| 14 |  | mirbtwnhl.2 |  | 
						
							| 15 |  | mirbtwnhl.3 |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 1 3 8 9 10 9 6 | hleqnid |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 16 18 | eqnbrtrd |  | 
						
							| 20 | 16 | fveq2d |  | 
						
							| 21 | 1 2 3 4 5 6 9 7 | mircinv |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 20 22 | eqtrd |  | 
						
							| 24 | 1 3 8 9 11 9 6 | hleqnid |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 23 25 | eqnbrtrd |  | 
						
							| 27 | 19 26 | 2falsed |  | 
						
							| 28 |  | simplr |  | 
						
							| 29 | 28 | neneqd |  | 
						
							| 30 | 6 | ad3antrrr |  | 
						
							| 31 | 9 | ad3antrrr |  | 
						
							| 32 | 12 | ad3antrrr |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 21 | ad3antrrr |  | 
						
							| 35 | 33 34 | eqtr4d |  | 
						
							| 36 | 1 2 3 4 5 30 31 7 32 31 35 | mireq |  | 
						
							| 37 | 29 36 | mtand |  | 
						
							| 38 | 37 | neqned |  | 
						
							| 39 | 14 | ad2antrr |  | 
						
							| 40 | 6 | ad2antrr |  | 
						
							| 41 | 10 | ad2antrr |  | 
						
							| 42 | 9 | ad2antrr |  | 
						
							| 43 | 1 2 3 4 5 6 9 7 12 | mircl |  | 
						
							| 44 | 43 | ad2antrr |  | 
						
							| 45 | 11 | ad2antrr |  | 
						
							| 46 | 13 | ad2antrr |  | 
						
							| 47 | 12 | ad2antrr |  | 
						
							| 48 | 1 3 8 12 10 9 6 | ishlg |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 49 | biimpa |  | 
						
							| 51 | 50 | simp3d |  | 
						
							| 52 | 51 | orcomd |  | 
						
							| 53 | 1 2 3 4 5 40 7 42 41 47 52 | mirconn |  | 
						
							| 54 | 15 | ad2antrr |  | 
						
							| 55 | 1 3 40 41 42 44 45 46 53 54 | tgbtwnconn2 |  | 
						
							| 56 | 1 3 8 43 11 9 6 | ishlg |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 38 39 55 58 | mpbir3and |  | 
						
							| 60 |  | simplr |  | 
						
							| 61 | 13 | ad2antrr |  | 
						
							| 62 | 6 | ad2antrr |  | 
						
							| 63 | 11 | ad2antrr |  | 
						
							| 64 | 9 | ad2antrr |  | 
						
							| 65 | 12 | ad2antrr |  | 
						
							| 66 | 10 | ad2antrr |  | 
						
							| 67 | 14 | ad2antrr |  | 
						
							| 68 | 21 | ad2antrr |  | 
						
							| 69 | 43 | ad2antrr |  | 
						
							| 70 | 1 2 3 4 5 62 64 7 63 | mircl |  | 
						
							| 71 | 57 | biimpa |  | 
						
							| 72 | 71 | simp3d |  | 
						
							| 73 | 1 2 3 4 5 62 7 64 69 63 72 | mirconn |  | 
						
							| 74 | 1 2 3 62 69 64 70 73 | tgbtwncom |  | 
						
							| 75 | 68 74 | eqeltrd |  | 
						
							| 76 | 1 2 3 4 5 62 64 7 63 64 65 | mirbtwnb |  | 
						
							| 77 | 75 76 | mpbird |  | 
						
							| 78 | 1 2 3 6 10 9 11 15 | tgbtwncom |  | 
						
							| 79 | 78 | ad2antrr |  | 
						
							| 80 | 1 3 62 63 64 65 66 67 77 79 | tgbtwnconn2 |  | 
						
							| 81 | 49 | adantr |  | 
						
							| 82 | 60 61 80 81 | mpbir3and |  | 
						
							| 83 | 59 82 | impbida |  | 
						
							| 84 | 27 83 | pm2.61dane |  |