Description: If an integer is 0 modulo a positive integer, this integer must be the product of another integer and the modulus. (Contributed by AV, 7-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | mod0mul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |
|
2 | nnrp | |
|
3 | mod0 | |
|
4 | 1 2 3 | syl2an | |
5 | simpr | |
|
6 | oveq1 | |
|
7 | 6 | eqeq2d | |
8 | 7 | adantl | |
9 | zcn | |
|
10 | 9 | adantr | |
11 | nncn | |
|
12 | 11 | adantl | |
13 | nnne0 | |
|
14 | 13 | adantl | |
15 | 10 12 14 | divcan1d | |
16 | 15 | adantr | |
17 | 16 | eqcomd | |
18 | 5 8 17 | rspcedvd | |
19 | 18 | ex | |
20 | 4 19 | sylbid | |