Metamath Proof Explorer


Theorem modm1p1mod0

Description: If a real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018)

Ref Expression
Assertion modm1p1mod0 AM+AmodM=M1A+1modM=0

Proof

Step Hyp Ref Expression
1 1re 1
2 modaddmod A1M+AmodM+1modM=A+1modM
3 1 2 mp3an2 AM+AmodM+1modM=A+1modM
4 3 eqcomd AM+A+1modM=AmodM+1modM
5 4 adantr AM+AmodM=M1A+1modM=AmodM+1modM
6 oveq1 AmodM=M1AmodM+1=M-1+1
7 6 oveq1d AmodM=M1AmodM+1modM=M-1+1modM
8 rpcn M+M
9 npcan1 MM-1+1=M
10 8 9 syl M+M-1+1=M
11 10 oveq1d M+M-1+1modM=MmodM
12 modid0 M+MmodM=0
13 11 12 eqtrd M+M-1+1modM=0
14 13 adantl AM+M-1+1modM=0
15 7 14 sylan9eqr AM+AmodM=M1AmodM+1modM=0
16 5 15 eqtrd AM+AmodM=M1A+1modM=0
17 16 ex AM+AmodM=M1A+1modM=0