Metamath Proof Explorer


Theorem mptcoe1fsupp

Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019)

Ref Expression
Hypotheses mptcoe1fsupp.p P=Poly1R
mptcoe1fsupp.b B=BaseP
mptcoe1fsupp.0 0˙=0R
Assertion mptcoe1fsupp RRingMBfinSupp0˙k0coe1Mk

Proof

Step Hyp Ref Expression
1 mptcoe1fsupp.p P=Poly1R
2 mptcoe1fsupp.b B=BaseP
3 mptcoe1fsupp.0 0˙=0R
4 3 fvexi 0˙V
5 4 a1i RRingMB0˙V
6 eqid coe1M=coe1M
7 eqid BaseR=BaseR
8 6 2 1 7 coe1fvalcl MBk0coe1MkBaseR
9 8 adantll RRingMBk0coe1MkBaseR
10 simpr RRingMBMB
11 6 2 1 3 7 coe1fsupp MBcoe1McBaseR0|finSupp0˙c
12 elrabi coe1McBaseR0|finSupp0˙ccoe1MBaseR0
13 10 11 12 3syl RRingMBcoe1MBaseR0
14 13 4 jctir RRingMBcoe1MBaseR00˙V
15 6 2 1 3 coe1sfi MBfinSupp0˙coe1M
16 15 adantl RRingMBfinSupp0˙coe1M
17 fsuppmapnn0ub coe1MBaseR00˙VfinSupp0˙coe1Ms0x0s<xcoe1Mx=0˙
18 14 16 17 sylc RRingMBs0x0s<xcoe1Mx=0˙
19 csbfv x/kcoe1Mk=coe1Mx
20 simpr RRingMBs0x0s<xcoe1Mx=0˙coe1Mx=0˙
21 19 20 eqtrid RRingMBs0x0s<xcoe1Mx=0˙x/kcoe1Mk=0˙
22 21 exp31 RRingMBs0x0s<xcoe1Mx=0˙x/kcoe1Mk=0˙
23 22 a2d RRingMBs0x0s<xcoe1Mx=0˙s<xx/kcoe1Mk=0˙
24 23 ralimdva RRingMBs0x0s<xcoe1Mx=0˙x0s<xx/kcoe1Mk=0˙
25 24 reximdva RRingMBs0x0s<xcoe1Mx=0˙s0x0s<xx/kcoe1Mk=0˙
26 18 25 mpd RRingMBs0x0s<xx/kcoe1Mk=0˙
27 5 9 26 mptnn0fsupp RRingMBfinSupp0˙k0coe1Mk