Metamath Proof Explorer


Theorem mptfnf

Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypothesis mptfnf.0 _xA
Assertion mptfnf xABVxABFnA

Proof

Step Hyp Ref Expression
1 mptfnf.0 _xA
2 eueq BV∃!yy=B
3 2 ralbii xABVxA∃!yy=B
4 r19.26 xAyy=B*yy=BxAyy=BxA*yy=B
5 df-eu ∃!yy=Byy=B*yy=B
6 5 ralbii xA∃!yy=BxAyy=B*yy=B
7 df-mpt xAB=xy|xAy=B
8 7 fneq1i xABFnAxy|xAy=BFnA
9 df-fn xy|xAy=BFnAFunxy|xAy=Bdomxy|xAy=B=A
10 8 9 bitri xABFnAFunxy|xAy=Bdomxy|xAy=B=A
11 moanimv *yxAy=BxA*yy=B
12 11 albii x*yxAy=BxxA*yy=B
13 funopab Funxy|xAy=Bx*yxAy=B
14 df-ral xA*yy=BxxA*yy=B
15 12 13 14 3bitr4ri xA*yy=BFunxy|xAy=B
16 eqcom x|xAyy=B=AA=x|xAyy=B
17 dmopab domxy|xAy=B=x|yxAy=B
18 19.42v yxAy=BxAyy=B
19 18 abbii x|yxAy=B=x|xAyy=B
20 17 19 eqtri domxy|xAy=B=x|xAyy=B
21 20 eqeq1i domxy|xAy=B=Ax|xAyy=B=A
22 pm4.71 xAyy=BxAxAyy=B
23 22 albii xxAyy=BxxAxAyy=B
24 df-ral xAyy=BxxAyy=B
25 1 eqabf A=x|xAyy=BxxAxAyy=B
26 23 24 25 3bitr4i xAyy=BA=x|xAyy=B
27 16 21 26 3bitr4ri xAyy=Bdomxy|xAy=B=A
28 15 27 anbi12i xA*yy=BxAyy=BFunxy|xAy=Bdomxy|xAy=B=A
29 ancom xA*yy=BxAyy=BxAyy=BxA*yy=B
30 10 28 29 3bitr2i xABFnAxAyy=BxA*yy=B
31 4 6 30 3bitr4ri xABFnAxA∃!yy=B
32 3 31 bitr4i xABVxABFnA