Metamath Proof Explorer


Theorem mrsubffval

Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubffval.c C=mCNT
mrsubffval.v V=mVRT
mrsubffval.r R=mRExT
mrsubffval.s S=mRSubstT
mrsubffval.g G=freeMndCV
Assertion mrsubffval TWS=fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩e

Proof

Step Hyp Ref Expression
1 mrsubffval.c C=mCNT
2 mrsubffval.v V=mVRT
3 mrsubffval.r R=mRExT
4 mrsubffval.s S=mRSubstT
5 mrsubffval.g G=freeMndCV
6 elex TWTV
7 fveq2 t=TmRExt=mRExT
8 7 3 eqtr4di t=TmRExt=R
9 fveq2 t=TmVRt=mVRT
10 9 2 eqtr4di t=TmVRt=V
11 8 10 oveq12d t=TmRExt𝑝𝑚mVRt=R𝑝𝑚V
12 fveq2 t=TmCNt=mCNT
13 12 1 eqtr4di t=TmCNt=C
14 13 10 uneq12d t=TmCNtmVRt=CV
15 14 fveq2d t=TfreeMndmCNtmVRt=freeMndCV
16 15 5 eqtr4di t=TfreeMndmCNtmVRt=G
17 14 mpteq1d t=TvmCNtmVRtifvdomffv⟨“v”⟩=vCVifvdomffv⟨“v”⟩
18 17 coeq1d t=TvmCNtmVRtifvdomffv⟨“v”⟩e=vCVifvdomffv⟨“v”⟩e
19 16 18 oveq12d t=TfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e=GvCVifvdomffv⟨“v”⟩e
20 8 19 mpteq12dv t=TemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e=eRGvCVifvdomffv⟨“v”⟩e
21 11 20 mpteq12dv t=TfmRExt𝑝𝑚mVRtemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e=fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩e
22 df-mrsub mRSubst=tVfmRExt𝑝𝑚mVRtemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e
23 ovex R𝑝𝑚VV
24 23 mptex fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩eV
25 21 22 24 fvmpt TVmRSubstT=fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩e
26 6 25 syl TWmRSubstT=fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩e
27 4 26 eqtrid TWS=fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩e