Metamath Proof Explorer


Theorem msrfval

Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msrfval.v V = mVars T
msrfval.p P = mPreSt T
msrfval.r R = mStRed T
Assertion msrfval R = s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a

Proof

Step Hyp Ref Expression
1 msrfval.v V = mVars T
2 msrfval.p P = mPreSt T
3 msrfval.r R = mStRed T
4 fveq2 t = T mPreSt t = mPreSt T
5 4 2 eqtr4di t = T mPreSt t = P
6 fveq2 t = T mVars t = mVars T
7 6 1 eqtr4di t = T mVars t = V
8 7 imaeq1d t = T mVars t h a = V h a
9 8 unieqd t = T mVars t h a = V h a
10 9 csbeq1d t = T mVars t h a / z z × z = V h a / z z × z
11 10 ineq2d t = T 1 st 1 st s mVars t h a / z z × z = 1 st 1 st s V h a / z z × z
12 11 oteq1d t = T 1 st 1 st s mVars t h a / z z × z h a = 1 st 1 st s V h a / z z × z h a
13 12 csbeq2dv t = T 2 nd s / a 1 st 1 st s mVars t h a / z z × z h a = 2 nd s / a 1 st 1 st s V h a / z z × z h a
14 13 csbeq2dv t = T 2 nd 1 st s / h 2 nd s / a 1 st 1 st s mVars t h a / z z × z h a = 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a
15 5 14 mpteq12dv t = T s mPreSt t 2 nd 1 st s / h 2 nd s / a 1 st 1 st s mVars t h a / z z × z h a = s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a
16 df-msr mStRed = t V s mPreSt t 2 nd 1 st s / h 2 nd s / a 1 st 1 st s mVars t h a / z z × z h a
17 15 16 2 mptfvmpt T V mStRed T = s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a
18 mpt0 s 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a =
19 18 eqcomi = s 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a
20 fvprc ¬ T V mStRed T =
21 fvprc ¬ T V mPreSt T =
22 2 21 syl5eq ¬ T V P =
23 22 mpteq1d ¬ T V s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a = s 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a
24 19 20 23 3eqtr4a ¬ T V mStRed T = s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a
25 17 24 pm2.61i mStRed T = s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a
26 3 25 eqtri R = s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s V h a / z z × z h a