Metamath Proof Explorer


Theorem mul2lt0rlt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 φA
mul2lt0.2 φB
mul2lt0.3 φAB<0
Assertion mul2lt0rlt0 φB<00<A

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φA
2 mul2lt0.2 φB
3 mul2lt0.3 φAB<0
4 1 2 remulcld φAB
5 4 adantr φB<0AB
6 0red φB<00
7 negelrp BB+B<0
8 2 7 syl φB+B<0
9 8 biimpar φB<0B+
10 3 adantr φB<0AB<0
11 5 6 9 10 ltdiv1dd φB<0ABB<0B
12 1 recnd φA
13 12 adantr φB<0A
14 2 recnd φB
15 14 adantr φB<0B
16 13 15 mulcld φB<0AB
17 simpr φB<0B<0
18 17 lt0ne0d φB<0B0
19 16 15 18 divneg2d φB<0ABB=ABB
20 13 15 18 divcan4d φB<0ABB=A
21 20 negeqd φB<0ABB=A
22 19 21 eqtr3d φB<0ABB=A
23 15 negcld φB<0B
24 15 18 negne0d φB<0B0
25 23 24 div0d φB<00B=0
26 11 22 25 3brtr3d φB<0A<0
27 1 adantr φB<0A
28 27 lt0neg2d φB<00<AA<0
29 26 28 mpbird φB<00<A