Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | mulcan1g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcl | |
|
2 | 1 | 3adant3 | |
3 | mulcl | |
|
4 | 3 | 3adant2 | |
5 | 2 4 | subeq0ad | |
6 | simp1 | |
|
7 | subcl | |
|
8 | 7 | 3adant1 | |
9 | 6 8 | mul0ord | |
10 | subdi | |
|
11 | 10 | eqeq1d | |
12 | subeq0 | |
|
13 | 12 | 3adant1 | |
14 | 13 | orbi2d | |
15 | 9 11 14 | 3bitr3d | |
16 | 5 15 | bitr3d | |