Metamath Proof Explorer


Theorem mulgnn0gsum

Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in Lang p. 6, second formula. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses mulgnngsum.b B = Base G
mulgnngsum.t · ˙ = G
mulgnngsum.f F = x 1 N X
Assertion mulgnn0gsum N 0 X B N · ˙ X = G F

Proof

Step Hyp Ref Expression
1 mulgnngsum.b B = Base G
2 mulgnngsum.t · ˙ = G
3 mulgnngsum.f F = x 1 N X
4 elnn0 N 0 N N = 0
5 1 2 3 mulgnngsum N X B N · ˙ X = G F
6 5 ex N X B N · ˙ X = G F
7 oveq1 N = 0 N · ˙ X = 0 · ˙ X
8 eqid 0 G = 0 G
9 1 8 2 mulg0 X B 0 · ˙ X = 0 G
10 7 9 sylan9eq N = 0 X B N · ˙ X = 0 G
11 oveq2 N = 0 1 N = 1 0
12 fz10 1 0 =
13 11 12 syl6eq N = 0 1 N =
14 eqidd N = 0 X = X
15 13 14 mpteq12dv N = 0 x 1 N X = x X
16 mpt0 x X =
17 15 16 syl6eq N = 0 x 1 N X =
18 3 17 syl5eq N = 0 F =
19 18 adantr N = 0 X B F =
20 19 oveq2d N = 0 X B G F = G
21 8 gsum0 G = 0 G
22 20 21 syl6eq N = 0 X B G F = 0 G
23 10 22 eqtr4d N = 0 X B N · ˙ X = G F
24 23 ex N = 0 X B N · ˙ X = G F
25 6 24 jaoi N N = 0 X B N · ˙ X = G F
26 4 25 sylbi N 0 X B N · ˙ X = G F
27 26 imp N 0 X B N · ˙ X = G F