Metamath Proof Explorer


Theorem mulmarep1el

Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A=NMatR
marepvcl.b B=BaseA
marepvcl.v V=BaseRN
ma1repvcl.1 1˙=1A
mulmarep1el.0 0˙=0R
mulmarep1el.e E=1˙NmatRepVRCK
Assertion mulmarep1el RRingXBCVKNINJNLNIXLRLEJ=ifJ=KIXLRCLifJ=LIXL0˙

Proof

Step Hyp Ref Expression
1 marepvcl.a A=NMatR
2 marepvcl.b B=BaseA
3 marepvcl.v V=BaseRN
4 ma1repvcl.1 1˙=1A
5 mulmarep1el.0 0˙=0R
6 mulmarep1el.e E=1˙NmatRepVRCK
7 simp3 INJNLNLN
8 simp2 INJNLNJN
9 7 8 jca INJNLNLNJN
10 1 2 3 4 5 6 ma1repveval RRingXBCVKNLNJNLEJ=ifJ=KCLifJ=L1R0˙
11 9 10 syl3an3 RRingXBCVKNINJNLNLEJ=ifJ=KCLifJ=L1R0˙
12 11 oveq2d RRingXBCVKNINJNLNIXLRLEJ=IXLRifJ=KCLifJ=L1R0˙
13 ovif2 IXLRifJ=KCLifJ=L1R0˙=ifJ=KIXLRCLIXLRifJ=L1R0˙
14 13 a1i RRingXBCVKNINJNLNIXLRifJ=KCLifJ=L1R0˙=ifJ=KIXLRCLIXLRifJ=L1R0˙
15 ovif2 IXLRifJ=L1R0˙=ifJ=LIXLR1RIXLR0˙
16 simp1 RRingXBCVKNINJNLNRRing
17 simp1 INJNLNIN
18 17 3ad2ant3 RRingXBCVKNINJNLNIN
19 7 3ad2ant3 RRingXBCVKNINJNLNLN
20 2 eleq2i XBXBaseA
21 20 biimpi XBXBaseA
22 21 3ad2ant1 XBCVKNXBaseA
23 22 3ad2ant2 RRingXBCVKNINJNLNXBaseA
24 eqid BaseR=BaseR
25 1 24 matecl INLNXBaseAIXLBaseR
26 18 19 23 25 syl3anc RRingXBCVKNINJNLNIXLBaseR
27 eqid R=R
28 eqid 1R=1R
29 24 27 28 ringridm RRingIXLBaseRIXLR1R=IXL
30 16 26 29 syl2anc RRingXBCVKNINJNLNIXLR1R=IXL
31 24 27 5 ringrz RRingIXLBaseRIXLR0˙=0˙
32 16 26 31 syl2anc RRingXBCVKNINJNLNIXLR0˙=0˙
33 30 32 ifeq12d RRingXBCVKNINJNLNifJ=LIXLR1RIXLR0˙=ifJ=LIXL0˙
34 15 33 eqtrid RRingXBCVKNINJNLNIXLRifJ=L1R0˙=ifJ=LIXL0˙
35 34 ifeq2d RRingXBCVKNINJNLNifJ=KIXLRCLIXLRifJ=L1R0˙=ifJ=KIXLRCLifJ=LIXL0˙
36 12 14 35 3eqtrd RRingXBCVKNINJNLNIXLRLEJ=ifJ=KIXLRCLifJ=LIXL0˙