Metamath Proof Explorer


Theorem mulmarep1el

Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A = N Mat R
marepvcl.b B = Base A
marepvcl.v V = Base R N
ma1repvcl.1 1 ˙ = 1 A
mulmarep1el.0 0 ˙ = 0 R
mulmarep1el.e E = 1 ˙ N matRepV R C K
Assertion mulmarep1el R Ring X B C V K N I N J N L N I X L R L E J = if J = K I X L R C L if J = L I X L 0 ˙

Proof

Step Hyp Ref Expression
1 marepvcl.a A = N Mat R
2 marepvcl.b B = Base A
3 marepvcl.v V = Base R N
4 ma1repvcl.1 1 ˙ = 1 A
5 mulmarep1el.0 0 ˙ = 0 R
6 mulmarep1el.e E = 1 ˙ N matRepV R C K
7 simp3 I N J N L N L N
8 simp2 I N J N L N J N
9 7 8 jca I N J N L N L N J N
10 1 2 3 4 5 6 ma1repveval R Ring X B C V K N L N J N L E J = if J = K C L if J = L 1 R 0 ˙
11 9 10 syl3an3 R Ring X B C V K N I N J N L N L E J = if J = K C L if J = L 1 R 0 ˙
12 11 oveq2d R Ring X B C V K N I N J N L N I X L R L E J = I X L R if J = K C L if J = L 1 R 0 ˙
13 ovif2 I X L R if J = K C L if J = L 1 R 0 ˙ = if J = K I X L R C L I X L R if J = L 1 R 0 ˙
14 13 a1i R Ring X B C V K N I N J N L N I X L R if J = K C L if J = L 1 R 0 ˙ = if J = K I X L R C L I X L R if J = L 1 R 0 ˙
15 ovif2 I X L R if J = L 1 R 0 ˙ = if J = L I X L R 1 R I X L R 0 ˙
16 simp1 R Ring X B C V K N I N J N L N R Ring
17 simp1 I N J N L N I N
18 17 3ad2ant3 R Ring X B C V K N I N J N L N I N
19 7 3ad2ant3 R Ring X B C V K N I N J N L N L N
20 2 eleq2i X B X Base A
21 20 biimpi X B X Base A
22 21 3ad2ant1 X B C V K N X Base A
23 22 3ad2ant2 R Ring X B C V K N I N J N L N X Base A
24 eqid Base R = Base R
25 1 24 matecl I N L N X Base A I X L Base R
26 18 19 23 25 syl3anc R Ring X B C V K N I N J N L N I X L Base R
27 eqid R = R
28 eqid 1 R = 1 R
29 24 27 28 ringridm R Ring I X L Base R I X L R 1 R = I X L
30 16 26 29 syl2anc R Ring X B C V K N I N J N L N I X L R 1 R = I X L
31 24 27 5 ringrz R Ring I X L Base R I X L R 0 ˙ = 0 ˙
32 16 26 31 syl2anc R Ring X B C V K N I N J N L N I X L R 0 ˙ = 0 ˙
33 30 32 ifeq12d R Ring X B C V K N I N J N L N if J = L I X L R 1 R I X L R 0 ˙ = if J = L I X L 0 ˙
34 15 33 eqtrid R Ring X B C V K N I N J N L N I X L R if J = L 1 R 0 ˙ = if J = L I X L 0 ˙
35 34 ifeq2d R Ring X B C V K N I N J N L N if J = K I X L R C L I X L R if J = L 1 R 0 ˙ = if J = K I X L R C L if J = L I X L 0 ˙
36 12 14 35 3eqtrd R Ring X B C V K N I N J N L N I X L R L E J = if J = K I X L R C L if J = L I X L 0 ˙