Metamath Proof Explorer


Theorem mulog2sum

Description: Asymptotic formula for sum_ n <_ x , ( mmu ( n ) / n ) log ^ 2 ( x / n ) = 2 log x + O(1) . Equation 10.2.8 of Shapiro, p. 407. (Contributed by Mario Carneiro, 19-May-2016)

Ref Expression
Assertion mulog2sum x+n=1xμnnlogxn22logx𝑂1

Proof

Step Hyp Ref Expression
1 eqid y+m=1ylogmmlogy22=y+m=1ylogmmlogy22
2 1 logdivsum y+m=1ylogmmlogy22:+y+m=1ylogmmlogy22domy+m=1ylogmmlogy2211+e1y+m=1ylogmmlogy2211log11
3 2 simp2i y+m=1ylogmmlogy22dom
4 eldmg y+m=1ylogmmlogy22domy+m=1ylogmmlogy22domzy+m=1ylogmmlogy22z
5 4 ibi y+m=1ylogmmlogy22domzy+m=1ylogmmlogy22z
6 id y+m=1ylogmmlogy22zy+m=1ylogmmlogy22z
7 1 6 mulog2sumlem3 y+m=1ylogmmlogy22zx+n=1xμnnlogxn22logx𝑂1
8 7 exlimiv zy+m=1ylogmmlogy22zx+n=1xμnnlogxn22logx𝑂1
9 3 5 8 mp2b x+n=1xμnnlogxn22logx𝑂1