Metamath Proof Explorer


Theorem mvrf

Description: The power series variable function is a function from the index set to elements of the power series structure representing X i for each i . (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses mvrf.s S=ImPwSerR
mvrf.v V=ImVarR
mvrf.b B=BaseS
mvrf.i φIW
mvrf.r φRRing
Assertion mvrf φV:IB

Proof

Step Hyp Ref Expression
1 mvrf.s S=ImPwSerR
2 mvrf.v V=ImVarR
3 mvrf.b B=BaseS
4 mvrf.i φIW
5 mvrf.r φRRing
6 eqid h0I|h-1Fin=h0I|h-1Fin
7 eqid 0R=0R
8 eqid 1R=1R
9 2 6 7 8 4 5 mvrfval φV=xIfh0I|h-1Finiff=yIify=x101R0R
10 eqid BaseR=BaseR
11 10 8 ringidcl RRing1RBaseR
12 5 11 syl φ1RBaseR
13 10 7 ring0cl RRing0RBaseR
14 5 13 syl φ0RBaseR
15 12 14 ifcld φiff=yIify=x101R0RBaseR
16 15 ad2antrr φxIfh0I|h-1Finiff=yIify=x101R0RBaseR
17 16 fmpttd φxIfh0I|h-1Finiff=yIify=x101R0R:h0I|h-1FinBaseR
18 fvex BaseRV
19 ovex 0IV
20 19 rabex h0I|h-1FinV
21 18 20 elmap fh0I|h-1Finiff=yIify=x101R0RBaseRh0I|h-1Finfh0I|h-1Finiff=yIify=x101R0R:h0I|h-1FinBaseR
22 17 21 sylibr φxIfh0I|h-1Finiff=yIify=x101R0RBaseRh0I|h-1Fin
23 1 10 6 3 4 psrbas φB=BaseRh0I|h-1Fin
24 23 adantr φxIB=BaseRh0I|h-1Fin
25 22 24 eleqtrrd φxIfh0I|h-1Finiff=yIify=x101R0RB
26 9 25 fmpt3d φV:IB