Metamath Proof Explorer


Theorem mzpcl2

Description: Defining property 2 of a polynomially closed function set P : it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpcl2 P mzPolyCld V F V g V g F P

Proof

Step Hyp Ref Expression
1 simpr P mzPolyCld V F V F V
2 simpl P mzPolyCld V F V P mzPolyCld V
3 elfvex P mzPolyCld V V V
4 3 adantr P mzPolyCld V F V V V
5 elmzpcl V V P mzPolyCld V P V f V × f P f V g V g f P f P g P f + f g P f × f g P
6 4 5 syl P mzPolyCld V F V P mzPolyCld V P V f V × f P f V g V g f P f P g P f + f g P f × f g P
7 2 6 mpbid P mzPolyCld V F V P V f V × f P f V g V g f P f P g P f + f g P f × f g P
8 simprlr P V f V × f P f V g V g f P f P g P f + f g P f × f g P f V g V g f P
9 7 8 syl P mzPolyCld V F V f V g V g f P
10 fveq2 f = F g f = g F
11 10 mpteq2dv f = F g V g f = g V g F
12 11 eleq1d f = F g V g f P g V g F P
13 12 rspcva F V f V g V g f P g V g F P
14 1 9 13 syl2anc P mzPolyCld V F V g V g F P