Metamath Proof Explorer


Theorem mzpcl2

Description: Defining property 2 of a polynomially closed function set P : it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpcl2 PmzPolyCldVFVgVgFP

Proof

Step Hyp Ref Expression
1 simpr PmzPolyCldVFVFV
2 simpl PmzPolyCldVFVPmzPolyCldV
3 elfvex PmzPolyCldVVV
4 3 adantr PmzPolyCldVFVVV
5 elmzpcl VVPmzPolyCldVPVfV×fPfVgVgfPfPgPf+fgPf×fgP
6 4 5 syl PmzPolyCldVFVPmzPolyCldVPVfV×fPfVgVgfPfPgPf+fgPf×fgP
7 2 6 mpbid PmzPolyCldVFVPVfV×fPfVgVgfPfPgPf+fgPf×fgP
8 simprlr PVfV×fPfVgVgfPfPgPf+fgPf×fgPfVgVgfP
9 7 8 syl PmzPolyCldVFVfVgVgfP
10 fveq2 f=Fgf=gF
11 10 mpteq2dv f=FgVgf=gVgF
12 11 eleq1d f=FgVgfPgVgFP
13 12 rspcva FVfVgVgfPgVgFP
14 1 9 13 syl2anc PmzPolyCldVFVgVgFP