| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
eleq1d |
|
| 3 |
2
|
imbi2d |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
eleq1d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
n0sno |
|
| 14 |
13
|
addsridd |
|
| 15 |
|
id |
|
| 16 |
14 15
|
eqeltrd |
|
| 17 |
13
|
adantr |
|
| 18 |
17
|
adantr |
|
| 19 |
|
n0sno |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
adantr |
|
| 22 |
|
1sno |
|
| 23 |
22
|
a1i |
|
| 24 |
18 21 23
|
addsassd |
|
| 25 |
|
peano2n0s |
|
| 26 |
25
|
adantl |
|
| 27 |
24 26
|
eqeltrrd |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
expcom |
|
| 30 |
29
|
a2d |
|
| 31 |
3 6 9 12 16 30
|
n0sind |
|
| 32 |
31
|
impcom |
|