Metamath Proof Explorer


Theorem ncvsge0

Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V = Base W
ncvsprp.n N = norm W
ncvsprp.s · ˙ = W
ncvsprp.f F = Scalar W
ncvsprp.k K = Base F
Assertion ncvsge0 W NrmVec ℂVec A K 0 A B V N A · ˙ B = A N B

Proof

Step Hyp Ref Expression
1 ncvsprp.v V = Base W
2 ncvsprp.n N = norm W
3 ncvsprp.s · ˙ = W
4 ncvsprp.f F = Scalar W
5 ncvsprp.k K = Base F
6 elinel1 A K A K
7 6 adantr A K 0 A A K
8 1 2 3 4 5 ncvsprp W NrmVec ℂVec A K B V N A · ˙ B = A N B
9 7 8 syl3an2 W NrmVec ℂVec A K 0 A B V N A · ˙ B = A N B
10 elinel2 A K A
11 absid A 0 A A = A
12 10 11 sylan A K 0 A A = A
13 12 3ad2ant2 W NrmVec ℂVec A K 0 A B V A = A
14 13 oveq1d W NrmVec ℂVec A K 0 A B V A N B = A N B
15 9 14 eqtrd W NrmVec ℂVec A K 0 A B V N A · ˙ B = A N B