Metamath Proof Explorer


Theorem ncvsprp

Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V=BaseW
ncvsprp.n N=normW
ncvsprp.s ·˙=W
ncvsprp.f F=ScalarW
ncvsprp.k K=BaseF
Assertion ncvsprp WNrmVecℂVecAKBVNA·˙B=ANB

Proof

Step Hyp Ref Expression
1 ncvsprp.v V=BaseW
2 ncvsprp.n N=normW
3 ncvsprp.s ·˙=W
4 ncvsprp.f F=ScalarW
5 ncvsprp.k K=BaseF
6 elin WNrmVecℂVecWNrmVecWℂVec
7 nvcnlm WNrmVecWNrmMod
8 7 adantr WNrmVecWℂVecWNrmMod
9 6 8 sylbi WNrmVecℂVecWNrmMod
10 eqid normF=normF
11 1 2 3 4 5 10 nmvs WNrmModAKBVNA·˙B=normFANB
12 9 11 syl3an1 WNrmVecℂVecAKBVNA·˙B=normFANB
13 id WℂVecWℂVec
14 13 cvsclm WℂVecWCMod
15 6 14 simplbiim WNrmVecℂVecWCMod
16 4 5 clmabs WCModAKA=normFA
17 15 16 sylan WNrmVecℂVecAKA=normFA
18 17 3adant3 WNrmVecℂVecAKBVA=normFA
19 18 eqcomd WNrmVecℂVecAKBVnormFA=A
20 19 oveq1d WNrmVecℂVecAKBVnormFANB=ANB
21 12 20 eqtrd WNrmVecℂVecAKBVNA·˙B=ANB