Metamath Proof Explorer


Theorem neicvgfv

Description: The value of the neighborhoods (convergents) in terms of the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses neicvg.o O=iV,jVk𝒫jiljmi|lkm
neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
neicvg.d D=PB
neicvg.f F=𝒫BOB
neicvg.g G=BO𝒫B
neicvg.h H=FDG
neicvg.r φNHM
neicvgfv.x φXB
Assertion neicvgfv φNX=s𝒫B|¬BsMX

Proof

Step Hyp Ref Expression
1 neicvg.o O=iV,jVk𝒫jiljmi|lkm
2 neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
3 neicvg.d D=PB
4 neicvg.f F=𝒫BOB
5 neicvg.g G=BO𝒫B
6 neicvg.h H=FDG
7 neicvg.r φNHM
8 neicvgfv.x φXB
9 dfin5 𝒫BNX=s𝒫B|sNX
10 1 2 3 4 5 6 7 neicvgnex φN𝒫𝒫BB
11 elmapi N𝒫𝒫BBN:B𝒫𝒫B
12 10 11 syl φN:B𝒫𝒫B
13 12 8 ffvelcdmd φNX𝒫𝒫B
14 13 elpwid φNX𝒫B
15 sseqin2 NX𝒫B𝒫BNX=NX
16 14 15 sylib φ𝒫BNX=NX
17 7 adantr φs𝒫BNHM
18 8 adantr φs𝒫BXB
19 simpr φs𝒫Bs𝒫B
20 1 2 3 4 5 6 17 18 19 neicvgel1 φs𝒫BsNX¬BsMX
21 20 rabbidva φs𝒫B|sNX=s𝒫B|¬BsMX
22 9 16 21 3eqtr3a φNX=s𝒫B|¬BsMX