Metamath Proof Explorer


Theorem nfcprod1

Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis nfcprod1.1 _kA
Assertion nfcprod1 _kkAB

Proof

Step Hyp Ref Expression
1 nfcprod1.1 _kA
2 df-prod kAB=ιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
3 nfcv _k
4 nfcv _km
5 1 4 nfss kAm
6 nfv ky0
7 nfcv _kn
8 nfcv _k×
9 nfmpt1 _kkifkAB1
10 7 8 9 nfseq _kseqn×kifkAB1
11 nfcv _k
12 nfcv _ky
13 10 11 12 nfbr kseqn×kifkAB1y
14 6 13 nfan ky0seqn×kifkAB1y
15 14 nfex kyy0seqn×kifkAB1y
16 4 15 nfrexw knmyy0seqn×kifkAB1y
17 nfcv _km
18 17 8 9 nfseq _kseqm×kifkAB1
19 nfcv _kx
20 18 11 19 nfbr kseqm×kifkAB1x
21 5 16 20 nf3an kAmnmyy0seqn×kifkAB1yseqm×kifkAB1x
22 3 21 nfrexw kmAmnmyy0seqn×kifkAB1yseqm×kifkAB1x
23 nfcv _k
24 nfcv _kf
25 nfcv _k1m
26 24 25 1 nff1o kf:1m1-1 ontoA
27 nfcv _k1
28 nfcsb1v _kfn/kB
29 23 28 nfmpt _knfn/kB
30 27 8 29 nfseq _kseq1×nfn/kB
31 30 17 nffv _kseq1×nfn/kBm
32 31 nfeq2 kx=seq1×nfn/kBm
33 26 32 nfan kf:1m1-1 ontoAx=seq1×nfn/kBm
34 33 nfex kff:1m1-1 ontoAx=seq1×nfn/kBm
35 23 34 nfrexw kmff:1m1-1 ontoAx=seq1×nfn/kBm
36 22 35 nfor kmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
37 36 nfiotaw _kιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
38 2 37 nfcxfr _kkAB